Конспект урока "Обратные тригонометрические функции" 10 класс

Преподаватель Бурковская Нина Дмитриевна.
Тема программы: 4. Тригонометрические функции -24 часа.
Тема урока: Обратные тригонометрические функции
Цель урока: знать определения арксинуса, арккосинуса, арктангенса, арккотангенса, графики этих функций,
свойства аркфункций, связь с тригонометрическими функциями уметь находить значения обратных
тригонометрических функций, решать простейшие уравнения, содержащие обратные тригонометрические
функции графическим и функционально-графическим методом
воспитывать ответственность, аккуратность при построении графиков
развивать логическое мышление, математическую речь, умение работать в нужном темпе
Тип урока: формирования зун.
Методы ведения: Комбинированный урок.
Оборудование урока Презентация
ХОД УРОКА:
Организационный момент – 1 2 мин.
Приветствие учащихся.
Отметить отсутствующих.
II. Опрос по домашнему заданию
1. Какие тригонометрические функции вы знаете?
2. Какая тригонометрическая функция четная?
III. Объяснение нового материала. Краткий конспект.
Функции y=arcsinx,y=arccosx,y=arctgx,y=arcctgx называются обратными
тригонометрическими функциями. Приставка «arc» означает обратный.
Функция y = arcsin x
По определению арксинуса числа для каждого x[−1;1] определено одно число y=arcsinx. Тем самым на
отрезке [−1;1] задана функция y=arcsinx,−1≤x≤1
Функция y=arcsinx является обратной к функции
y=sinx, где −π/2≤x≤π/2
Поэтому свойства функции y=arcsinx можно получить из свойств функции
y=sinx
График функции y=arcsinx симметричен графику функции
y=sinx, где −π/2≤x≤π/2 относительно прямой y=x .
График функции y=arcsinx
Основные свойства функции y=arcsinx
1. Область определения - отрезок [−1;1]
2. Множество значений - отрезок [−π/2;π/2]
3. Функция y=arcsinx - возрастает.
4. Функция y=arcsinx является нечётной, так как
arcsin(−x)=−arcsinx
Функция y = arccos x
По определению арккосинуса числа для каждого x[−1;1] определено одно число y=arccosx. Тем самым на
отрезке [−1;1] определена функция
y=arccosx,где −1≤x≤1.
Функция y=arccosx является обратной к функцииy=cosx,где 0≤x≤π
График функции y=arccosx симметричен графику функции y=cosx,где 0≤x≤π, относительно прямой y=x
Функция y=arccosx
Основные свойства функции y=arccosx
1. Область определения - отрезок [−1;1]
2. Множество значений - отрезок [0;π]
3. Функция y=arccosx убывает
Функция y = arctg x