Конспект урока по математике "Решение задач на дроби" 5 класс
Открытый урок по математике в 5 классе.
Тема урока: Решение задач на дроби
Тип урока. Урок систематизации и обобщения.
Форма обучения: фронтальная, групповая.
Учебная задача. Систематизировать и обобщить способы решения задач на
дроби, используя различные приёмы составления задач, такие как: составление
требования по условию задачи; составление аналогичной задачи; составление
задачи по числовому выражению; составление задачи, обратной данной; приёмы
обобщения и конкретизации.
Диагностируемые цели:
- ученик знает и умеет решать ключевые задачи на дроби;
- ученик понимает, что с помощью ключевых задач можно решить более
сложные задачи;
- ученик знает следующие приёмы составления задач: составление требования по
условию задачи, составление аналогичной задачи, составление задачи по
числовому выражению, составление задачи, обратной данной, приёмы
обобщения и конкретизации;
- ученик понимает, что составление задач помогает лучше усвоить способы
решения задач.
ХОД УРОКА
I. Мотивационно – ориентировочная часть
- Начнём мы сегодня наш урок с отгадывания ребусов.
Слайд.
,, ,, ,, ,,
А
[Дробь и задача]
- Используя эти слова, сформулируйте тему урока.
[Решение задач на дроби]
Слайд.
- Ребята, какие учебные задачи вы поставили бы перед собой на этот урок?
[- повторить решение задач на дроби;
- решать задачи разными способами;
- составлять задачи и т.д.]
- Цель нашего сегодняшнего урока – систематизировать наши знания о задачах
на дроби, рассмотреть более сложные задачи на дроби в процессе их составления
и решения.
II. Операционно- познавательная часть урока
- Какие типы задач на дроби вы умеете решать?
(Нахождение дроби от числа и числа по его дроби, какую часть одно число
составляет от другого).
Обратим внимание на первые два типа задач.
- Как связаны между собой эти задачи? Как бы вы назвали эти задачи
относительно друг друга?
[Взаимно обратные задачи]
- Из предложенного списка задач, определите, к какому типу относится каждая
задача. Прямо на листочке, около каждой задачи поставьте цифру I , II или III .
Каждая пара получает листочек с задачами.
1. От дома Настеньки до избушки Бабы-Яги 1 км. Чтобы найти братца
Иванушку, Настенька добежала сначала до печки, что составило ¼ всего
пути. Сколько метров пробежала Настенька до печки? (I)
2. Гетафикс сварил 6 литров волшебного зелья. А ему нужно сварить 18
литров этого зелья. Какую часть зелья сварил Гетафикс? (III)
3. Крокодил Гена прочитал ¾ книги о строительстве домов. Сколько страниц
прочитал Гена, если в книге всего 136 страниц? (I)
4. После прогулки Карлсон довёз Малыша до его дома, пролетев 2/5 пути от
парка до своего дома, а это составляет 10 км. Сколько км должен
пролететь Карлсон от парка до своего дома? (II)
Далее проверяется выполнение заданий.
- Объясните, почему отнесли к I типу задачу 1, ко II типу задачу 4? Устно
решите эти задачи.
(1. 1000 м • ¼ = 250 м, 4. 10 : 2/5 = 10 • 5/2 = 25 км.)
- Давайте решим следующую задачу.
1. Айболит за первый день вылечил 3/5 всех заболевших зверей, а во второй
он вылечил оставшихся 30 зверюшек. Сколько всего зверей вылечил
Айболит?
Решение.
Схема.
1) 1 – 3/5 = 2/5
2) 30 : 2/5= 30 • 5/2 = 75(зв.)
- Что нужно уметь, для того, чтобы различать задачи на нахождение дроби от
числа и числа по его дроби?
[Надо уметь анализировать задачи, правильно составлять краткую запись
или модель, быть внимательными при решении задач]
- Итак, проверим вашу внимательность при решении задач.
Двум девочкам было дано задание провести анкету среди одноклассников и
выразить результаты в виде дробей. Вопросы были такие: 1. Знаете ли вы
правила дорожного движения, 2.Выполняете ли вы эти правила?
Всего – 25 уч.
Не выполняют – 3/25 всех уч.
Не всегда выполняют – 2/5 всех уч.
На какие вопросы вы можете получить ответы, используя эти данные?]
[Сколько учеников не выполняют (выполняют) ПДД?
Сколько учеников всегда выполняют ПДД? и т.д.]
- Выберите один вопрос, при ответе на который, придётся выполнить
наибольшее количество действий.
[Сколько учеников всегда выполняют ПДД?]
- К какому типу относится эта задача? (Нахождение части от числа, выраженную
дробью).
- На доску запишем решение задачи (по действиям и выражением).
Возможны 2 способа решения задачи
1 способ: 2 способ:
1) 25 • 3/25 = 3 (ч.) – не выполняют 1) 2/5 +3/25 = 10/25 + 3/25 = 13/25
2) 25 • 2/5 = 10 (ч.) – не всегда вып. 2) 1- 13/25 = 12/25
3) 25 – (10+ 3) = 12 (ч.) – выполняют 3) 25 • 12/25 = 12 (ч.)
[ 25 –– 25 • 3/25 - 25 • 2/5 = 12(ч.) ]
- Давайте обратимся к результатам решённой задачи. Оказывается половина
ребят 5 «В» класса могут попасть в ДТП! Так как не всегда выполняют правила
дорожного движения! Есть над чем работать классному руководителю!
- Составьте в парах задачу, обратную первой и решите её.
Не выполняют – 3/25 всех уч.
Не всегда выполняют – 2/5 всех уч. ?
Всегда выполняют – 12 учеников
- К какому типу относится эта задача?
[Нахождение числа по его дроби]
Решение.
1) 1 – (3/25 + 2/5) = 12/25
2) 12 : 12/25 = 25 (уч.)
Самостоятельная работа.
В – 1.
В компьютерной игре разыгрывается 20 очков. Ира набрала 3/10 всех
возможных очков, а Саша в 2 раза больше. Сколько очков набрал Саша?
В – 2.
Длина прямоугольника равна 10 см, что составляет 5/2 его ширины. Чему равна
площадь прямоугольника?
Обменяйтесь тетрадями и проверьте выполнение работы по образцу на слайде.
Поставьте + или -. Поднимите руки, кто получил +, а кто -?
У нас осталось время, чтобы решить задание на повторение.
№ 582 (1, 3, 5, 7)
III. Рефлексивно – оценочная часть урока
Подведем итог урока.
Чем мы занимались сегодня?
Каждый в своей тетради нарисуйте «смайлики», в зависимости от своего
настроения от этого урока.
Я понимал всё, о чём говорилось и, что делалось на
уроке. Мне было интересно.
Мне было достаточно комфортно на уроке, но я
принимал в нём не очень активное участие. Мне
было не очень интересно.
К ответам на уроке
я был не готов. Мне было скучно на уроке.
- Домашнее задание:
1) Составить задачу на нахождение числа по его части и из неё
получить другие возможные задачи. Решить полученные задачи.
Аннотация к открытому уроку.
Данный урок является уроком обобщения и систематизации по теме «Задачи на
дроби». Выбранная форма обучения – сочетание фронтальной и групповой.
Учащиеся данного класса умеют и любят работать в группах. При такой
организации обучения они все имеют возможность высказаться по теме и быть
услышанными товарищами. Те, кто хорошо усвоил тему, могут закрепить свои
умения, объясняя и корректируя ответы в группе тех ребят, которые
недостаточно уверены в своих знаниях. Учащиеся заранее были разделены на
группы, каждая группа получила необычное домашнее задание, связанное с ДТП
и ПДД и участием в них детей.
Мотивационно – ориентировочная часть урока начинается с этапа актуализации,
на котором учащимся предлагается отгадать ребусы и, используя полученные
слова, сформулировать тему урока. Такая организация соответствует возрастным
особенностям учащихся 5 класса и создаёт положительный эмоциональный
настрой. Далее ребята привлекаются к постановке учебной задачи урока, что
позволяет учащимся не только понять цели урока, но и сознательно принять их.
Причём эти цели прописываются на доске и в тетрадях (к ним можно вернуться
как в ходе урока, так и при подведении итогов урока).
Содержательная часть урока направлена на организацию деятельности
учащихся, непосредственно связанной с решением учебной задачи. Сначала
вспоминаются типы задач на дроби, к простейшим (основным) составляются
графические модели, причём, рисуются они (и все последующие) на отдельной
доске там же, где записаны цели урока. Устанавливается связь между этими
задачами. После этого учащиеся классифицируют задачи из предложенного
списка по типам. Так как задачи одношаговые, то при проверке выполнения
задания ребята обосновывают, почему отнесли задачу к тому, или другому типу
и устно решают по одной задаче каждого типа. Это позволяет
сохранить высокий темп урока. Далее ученикам предлагается изменить
графические модели так, чтобы в решении задачи было на одно действие
больше. Это задание уже не совсем обычное для ребят, потому что раньше они
сначала решали задачи, а потом проводили обобщение (строя модели). После
выполнения этого задания, ученики получают конкретные задачи,
соответствующие новым моделям и решают их. Учащиеся 1 группы по
результатам своих исследований составили более сложную задачу, чем решали
до этого, предложили остальным ученикам составить вопросы к задаче. Выбрав
один, учащиеся решают задачу. Обсудив решение и записав на доске два способа
решения, учащиеся получают новое задание: по заданному числовому
выражению, изменив условие данной задачи, составить новую задачу.
Завершается работа с данной задачей составлением обратной задачи и её
решением. После чего для данной и обратной задачи ученики рисуют
графические модели.
На первом этапе рефлексивно-оценочной части соотносятся цели,
запланированные в начале урока и полученные результаты. На этом этапе
ученик отвечает себе на вопросы: «Достиг ли я целей, которые были поставлены
на этот урок?» На втором этапе анализируются приёмы, которые использовали
для достижения результатов. Таким образом, школьники осознают не только
результаты деятельности, но и способы их получения. На этапе оценивания
деятельности, каждый учащийся получает две «оценки» – данную группой
(отметка) и самооценку (смайлик). При этом происходит анализ учащимися
значимости вклада каждого в совместно полученные результаты, уровень
усвоения способов решение и составления задач на дроби, собственное
эмоциональное состояние. На этом этапе ребёнок пытается ответить на вопросы:
«Доволен ли я своей работой? Всё ли мне было понятно? Какой момент мне
больше всего понравился?»
Подведя итоги работы были получены следующие результаты:
- оценки, которые поставили ребята в группах таковы:
«5» - 10 чел., «4» - 10 чел., «3» - 1 чел.;
- самооценки выглядят так:
- 17 чел.; - 3 чел.; - 1 чел.
Математика - еще материалы к урокам:
- Технологическая карта урока "Определение производной. Механический и геометрический смысл производной" 10 класс
- Презентация к уроку математики "Сумма углов треугольника"
- Контрольная работа "Деление многозначных чисел на однозначное" 4 класс
- Разработка урока "Обыкновенные дроби" 5 класс (По программе И.И. Зубаревой, А.Г. Мордковича)
- Конспект урока "Выделение геометрических фигур в конструкции предметов"
- Контрольная работа "Пропорция" 6 класс