Моя педагогическая концепция
Моя педагогическая концепция
Каждый современный педагог ставит перед собой вопрос, как
обеспечить высококачественное обучение каждого учащегося и усвоение им
знаний в объеме образовательного стандарта, дать возможность для его
дальнейшего развития. Данный проблемный вопрос имеет несколько путей
решения. Но ведущая педагогическая идея на уроках математики
заключается в создании условий для индивидуального развития учащегося,
повышения его познавательной активности. Моя задача, как учителя,
организовать учебную деятельность таким образом, чтобы полученные
знания на уроке учащимися были результатом их собственных поисков.
Конечно, эти поиски необходимо организовать, ими управлять, развивая
познавательную активность школьников. Важно, что качество
математических знаний определяется тем, что умеет с ними делать ученик.
Целью своей профессиональной деятельности считаю создание условий
для повышения познавательной самостоятельности и творческой активности
учащихся через использование современных педагогических технологий на
уроках математики.
Для достижения поставленной цели необходимо решить следующие
задачи профессиональной деятельности:
1.Создать условия для повышения познавательной самостоятельности и
творческой активности учащихся на уроках математики;
2.Использовать современные педагогические технологии для повышения
интереса к математике и повышения качества знаний;
3.Проанализировать условия успешного формирования математического
образования школьника.
Решение задач требует ресурсного обеспечения и программно-
методического сопровождения, применение современных образовательных
технологий, совершенствование методов обучения, воспитания и диагностики
развития обучающихся.
Грамотно выстроенная образовательная программа, применение новых
современных образовательных технологий (исследование, проектирование,
проблемное обучение, ИКТ-технологии, здоровьесберегающие технологии и
т.д.) ведут учащихся к высокому результату.
С целью активизации познавательной деятельности учащихся на уроках
математики я использую элементы технологии проблемного обучения.
О проблемном обучении писали И.Я.Лернер, и М.Н. Скаткин:
«Своеобразие проблемного обучения в том, что учащиеся систематически
включаются учителем в процесс поиска доказательного решения новых для
них проблем, благодаря чему они учатся самостоятельно добывать знания,
применять ранее усвоенные и овладевают опытом творческой деятельности».
Главными целями проблемного обучения являются следующие:
- развитие мышления и способностей учащихся;
- усвоение учащимися знаний и умений, добытых в ходе активного поиска и
самостоятельного решения проблем;
- воспитание активной творческой личности учащегося, умеющего видеть,
ставить и разрешать нестандартные проблемы.
Наиболее активно используются методы проблемного обучения:
проблемное изложение, эвристическая беседа, метод исследования.
Сегодня обществу нужен не только человек, который много знает
и умеет, но прежде всего человек, который умеет думать. А если он умеет
думать, то перед ним возникала проблемная ситуация. Проблемная
ситуация - одна из закономерностей процессов мышления, его начальный
момент.
Мне интересны десять способов создания проблемной ситуации по М.И.
Махмутову:
1. Побуждение учащихся к теоретическому объяснению явлений, фактов,
внешнего несоответствия между ними. Это вызывает поисковую
деятельность учеников и приводит к активному усвоению новых знаний.
2. Использование учебных и жизненных ситуаций, возникающих при
выполнении учащимися практических заданий в школе, дома или на
производстве, в ходе наблюдений за природой. Проблемные ситуации в этом
случае возникают при попытке учащихся самостоятельно достигнуть
поставленной перед ними практической цели. Обычно ученики в итоге
анализа сами формулируют проблему.
3. Постановка учебных практических заданий на объяснение явления или
поиск путей его практического применения. Примером может служить любая
исследовательская работа учащихся на учебно - опытном участке,
в мастерской, лаборатории и т.д.
4. Побуждение учащихся к анализу фактов и явлений действительности,
порождающему противоречия между житейскими представлениями
и научными понятиями об этих фактах.
5. Выдвижение предположений (гипотез), формулировка выводов и их
опытная проверка.
6. Побуждение учащихся к сравнению, сопоставлению
и противопоставлению фактов, явлений, правил, действий, в результате
которых возникает проблемная ситуация.
7. Побуждение учащихся к предварительному обобщению новых фактов.
В этом случае возникает проблемная ситуация, так как сравнение выявляет
свойства новых фактов, необъяснимые их признаки.
8. Ознакомление учащихся с фактами, носящими как будто бы
необъяснимый характер и приведшими в истории науки к постановке
научной проблемы. Обычно эти факты и явления как бы противоречат
сложившимся у учеников представлениям и понятиям, что объясняется
неполнотой, недостаточностью их прежних знаний.
9. Организация межпредметных связей.
10. Варьированные задачи, переформулировка вопроса.
Проблемно-поисковый подход в моей педагогической практике связан с
созданием на уроках проблемных ситуаций, стимулирующих открытия
учащихся. Стремление на уроках не давать информацию в готовом виде, а
строить урок так, чтобы ученики «открывали» новое знание, смело
высказывали свое мнение или предположение.
Для создания проблемной ситуации на уроке использую противоречивые
факты, научные теории, взаимоисключающие точки зрения или ответы
учеников на задаваемый вопрос или практическое задание, выполнить
которое можно, опираясь на новый материал. На уроке создаётся атмосфера
сотрудничества, совместного поиска ответа на проблемные вопросы.
Проблемные ситуации использую на различных этапах учебного занятия:
организационно-мотивационный, изучение нового материала, первичное
закрепление, использование полученных знаний в практике, на этапе
рефлексии.
На каждом уроке стараюсь привлекать учащихся к самостоятельному
определению понятий. С 5 класса, если в начальной школе не сформировано
умение выделять ключевые слова, учимся определять понятия. На основании
наблюдений, описаний ученики выделяют существенные признаки предмета
или явления. Например, учащиеся усвоили понятие «прямоугольник».
Необходимо определить понятие «квадрат». Используем ИКТ-технологии.
Через изображение прямоугольника и квадрата на экране устанавливаем, что
общего во всех этих фигурах, даем определение понятия «квадрат». После
многократного повторения этот приём закрепляется в сознании школьника
как способ определения понятия, как средство познания окружающей
действительности.
Умение правильно, критически мыслить необходимо всем людям.
Обычно на уроке математики учащимся приходится опровергать ложные
суждения. В процессе этой работы они должны проявить высокую
наблюдательность и путём сопоставления найти ошибку. Такого типа
задания сейчас актуальны при подготовке к ГИА. Поэтому при проведении
зачетов по геометрии часто включаю в тесты задачи, требующие высказать
истинно или ложно данное утверждение.
Учащиеся чаще на занятиях получают задания, в которых ошибки
исключаются. В результате у школьников вырабатывается абсолютное
доверие сообщениям, указаниям, заданиям. Но необходимо развивать у
школьников способность к анализу, умению находить ошибки и
обосновывать их. Прививать школьникам эти навыки надо постепенно:
сначала научить определять суждение, в котором имеется ошибка, затем
подбирать аргументы, опровергающие ошибки и, наконец, развёрнуто и
последовательно строить опровержение. Опровергнуть суждение – значит
установить его ложность; приводимый аргумент должен точно
соответствовать логическим законам, правилам. Здесь важны различные
приемы для поиска ошибок: взаимопроверка, рецензирование и диспут.
Объяснение нового материала является эффективным, если содержание
передаваемой информации и форма её подачи обеспечивают необходимую
активность учащихся. Как учитель организует объяснение, во многом
зависит качество знаний школьников. Вводный материал, связь данной темы
с темой предыдущего урока, создание проблемной ситуации, интересные
задания для первичного осмысления изученного – это задача для учителя
математики на каждый урок. Если школьники видят творчество учителя,
ощущают его заинтересованность в активности познания школьниками
математики, то многие, да многие, начнут менять свое отношение и к урокам
математики, и к познавательной деятельности, и к самостоятельности
познания.
Проблемный урок обеспечивает более качественное усвоение знаний,
развитие интеллекта и развитие творческих способностей школьника,
воспитание активной личности.
Прочитанные слова немецкого драматурга и философа Г.Э. Лессинга:
«Спорьте, заблуждайтесь, ошибайтесь, но ради бога, размышляйте, и хотя и
криво, да сами»,- способствовали изменению отношения к проектно-
исследовательской работе на уроках математики, ее включению в
образовательный процесс. Эта технология - создание условий для
расширения познавательных интересов школьников. В 5-6 классах
использую исследовательские задачи. Ценю ситуации на уроке, когда
возникает проблема, которую можно решить через исследование. Например,
поиск быстрого и точного вычисления площади поверхности стола. А
изучение числа Пи не только создало проблемную ситуацию (непонимание
определения в учебнике), было проведено исследование (определение, чему
равно отношение длины окружности к её диаметру), но и выполнить проект
«Что такое число Пи?». Именно работа над проектом ставит школьника в
такую ситуацию, когда ему нужно новую информацию анализировать,
отбирать самую главную, перерабатывать и предъявлять окружающим.
Поэтому в проектной деятельности успешно формируются информационные
компетенции.
Используя современные образовательные технологии, совершенствуя
методы и приемы обучения, учитель создает условия, в которых ученик
ощущает себя самостоятельным творцом.
Педагогика - еще материалы к урокам:
- Перспективное планирование по художественной литературе в средней группе
- Использование нетрадиционных технологий в практике работы учителя-логопеда
- Преодоление нарушений звукопроизношения у дошкольников с дислалией
- Сценарий "Новогодний бал. Новогодняя сказка" (подготовительная группа)
- Презентация "Педсовет Условия повышения качества знаний обучающихся"
- Педсовет "Условия повышения качества знаний обучающихся"