Решение планиметрических задач (прототип заданий ЕГЭ № 16)

Подписи к слайдам:
Решение планиметрических задач (прототип заданий ЕГЭ № 16) Выполнил: учитель математики МБОУ «Северная СОШ №2» Фонакова И.И.

Задача № 16 по планиметрии, которую включает вариант КИМ ЕГЭ по математике профильного уровня, – объективно одна из самых трудных, если не самая сложная для абитуриентов. Дело в том, что в обычной (не профильной или специализированной) школе планиметрию изучают только в 7–9-х классах, на эту дисциплину отводится два урока в неделю, что совершенно недостаточно для того, чтобы хорошо изучить свойства фигур планиметрии и научиться применять их при решении задач.

Каждая задача по геометрии уникальна по своему содержанию, поэтому для решения таких задач практически неприменим алгоритмический подход, который является весьма успешным при решении задач по алгебре, в результате многие школьники даже не пытаются решать геометрические задачи. Все это приводит к тому, что и сравнительно несложная задача по планиметрии становится непосильной для выпускников школ.

Задача №1 Oснования трапеции равны 4 и 9, а её диагонали равны 5 и 12. а) Докажите, что диагонали трапеции перпендикулярны. б) Найдите высоту трапеции. Задача №2 B остроугольном треугольнике KMN проведены высоты KB и NA. а) Докажите, что угол ABK равен углу ANK. б) Найдите радиус окружности, описанной около треугольника ABM, если известно, что и Задача №3 В прямоугольном треугольнике ABC точки M и N — середины гипотенузы AB и катета BC соответственно. Биссектриса угла BAC пересекает прямую MN в точке L. а) Докажите, что треугольники AML и BLC подобны. б) Найдите отношение площадей этих треугольников, если Задача №4 Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C а) Докажите, что прямые AD и BC параллельны. б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.