Решение логарифмических уравнений функционально-графическим способом 10 класс

Урок
Образовательная организация: МОУ СОШ №1 п.Пангоды
Дата: 08.12.2022
Кабинет математики №303
Тема урока: Решение логарифмических уравнений функционально-графическим способом
Тип урока: урок изучения и первичного закрепления новых знаний
Класс: 10
Цели:
- Обучающая по достижению планируемых предметных результатов:
Учитель: сформировать умение решать логарифмические уравнения графическим методом
Ученик:
- (должен) научиться определять логарифмические уравнения, которые решаются графическим способом.
- (получит возможность) научиться решать логарифмические уравнения графическим способом.
- Развивающая по достижению планируемых метапредметных результатов:
Учитель: создать условия для развития коммуникативных навыков: сотрудничества, взаимодействия, интериоризации.
Ученик: развивать умения работать с информацией, выражать свои мысли в устной и письменной форме, слушать и читать с пониманием.
- Воспитательная по достижению планируемых личностных результатов:
Учитель: создать условия для формирования уверенного поведения, взаимопомощи и взаимоподдержки.
Ученик: воспитывать в себе качества уверенного поведения, уважения различных точек зрения, уважительное отношение к партнёрам, внимание к
личности другого.
Формы работы: фронтальная, индивидуальная, парная, групповая.
УМК: «Алгебра и начала анализа 10-11» (Ш.А. Алимов).
Оборудование: ПК учителя, интерактивная доска, документ камера.
Этапы урока
Время
Деятельность учителя
Деятельность ученика
Организационный
этап(1мин)
Приветствие. Эмоциональный настрой на работу.
(Слайд 1)
Приветствуют учителя, настраиваются на урок.
Актуализация знаний и
мотивация к изучению
нового материала,
целеполагание (10мин)
С прошлого занятия у нас осталось одно
нерешенное уравнение из таблицы, какое?
(Слайд 2)
Запишем его на доске.
Вам интересно знать, как решается данное
уравнение?
На прошлом занятии вы предлагали способ по
определению логарифма. Давайте попробуем
решить этим способом со мной на доске.
По определению: log
2
х=-х+1
Х=2
-х+1
И что будем делать дальше??
Как вы думаете, можно ли нам угадать корень?
Проверим число 1? Мы видим, что единица
является корнем уравнения, но каждое ли уравнение
можно решить методом подбора? А если корни не
целые? Поэтому, можем сказать, что не любое
уравнение можно решить таким способом.
log
2
х=-х+1
Отвечают на вопросы учителя.
-Пытаются устно решить уравнение по
определению логарифма.
-Отвечают на вопросы учителя.
Давайте рассмотрим левую и правую часть
уравнения. Что вы заметили? Какие функции в
левой и правой части?
- Верно. Функция вида y= log
2
х и y=-х+1
Схематично построим эти два графика функций на
одной координатной плоскости.
Мы видим, что два графика пересекаются в одной
точке. Что это значит?
Как называется данный способ решения уравнений?
Тогда какая будет тема урока?
(Слайд 3)
Запишите тему урока себе в тетрадь.
Какую же цель поставим сегодня на уроке?
Каковы будут этапы нашего урока?
- логарифмическая и линейная.
- Один ученик у доски строит два графика
функций на одной координатной плоскости.
- что уравнение имеет решение.
- графический.
- решение логарифмических уравнений
графическим способом.
-Записывают тему урока себе в тетрадь.
- научиться решать логарифмические
уравнения графическим способом.
Называют этапы урока.
1) повторить свойства и графики функций
2) изучить способ решения логарифмических
уравнений графическим способом.
3) Проверить себя на уровень освоения темы.
Первичное усвоение
новых знаний
(14 мин)
- Какие знания нам понадобились для решения
графическим способом?
- На столах у вас лежат кластеры, необходимо по данной
функции схематично нарисовать график, на эту работу у
вас 5 минут, после выполнения проверим с помощью
документ камеры.
Контроль и помощь педагогов.
Теперь проанализируйте свою деятельность и оцените
ее, посмотрите в оценочные листы, поставьте себе то
количество баллов, сколько верных графиков вы
построили.
Мы вспомнили, как выглядят графики функций, которые
понадобятся нам для дальнейшей работы.
- Давайте убедимся, что корнем уравнения и вправду
будет единица (презентация, слайд 4).
Работаем с построением графика:
необходимое условие на логарифм? - два клика
функция логарифмическая - клик
таблица - клик
заполняем таблицу вместе с учениками, находим
«игрек»
функция линейная - клик
таблица - клик
заполняем таблицу вместе с учениками, находим
«игрек» - клик
строим график функции логарифмическую- клик
строим график функции линейную - клик
- В какой точке пересекаются графики?
- Какой будет ответ уравнения?
-Почему единица, а не ноль?
Графики функций и их построение
Выполняют задания кластере.
- (1;0)
- единица
- потому что корень уравнения Х
-да
-получается равенство
- Удовлетворяет ответ условию?
- Выполним проверку, подставив единицу в уравнение.
Равенство получается?
-Значит решено верно! Какой вывод можно сделать? Что
при решении графическим способом необходимо
строить график схематично или четко?
- Теперь работаем в паре, постройте, помогая друг другу
данный график функции графическим способом, на
выполнение данной работы у вас 5 минут.
На доске пишу уравнение:
Проверяем с помощью документ-камеры работу
учащегося.
- сделаем вывод: уравнения, которые решаются с
помощью графического способа, как могут иметь...
Оцените свою работу, поставив себе баллы за верность
решения и за свой вклад работы в паре.
- Посмотрите на доску, это фрагмент из конспекта с
Российской электронной школы, такой же фрагмент есть
у вас на столах в виде памятки. Прочтите его и давайте
посмотрим на последнее уравнение и наш кластер (на
доске написано оно).
- Определим монотоннос ть логарифмической функции,
какова она?
- А степенная?
- Две функции у нас монотонно возрастают, тогда по
правилу, что может быть?
- Верно! Сделаем вывод на основании этих монотонно
возрастающих функциях.
Физкультминутка.
-четко
Выполняют работу в парах
-решение, так и не могут!
- возрастает на всем промежутке
-также возрастает
-один корень или нет корней
- если функции монотонно возрастают, то
уравнение может иметь один корень или не иметь
корней вообще!
-Встаем из-за своих рабочих мест. Я говорю название
графика и Вам нужно будет его изобразить. (парабола
ветви вниз, возрастающая прямая, гипербола, график
модуля).
Дети выполняют физкультминутку.
Закрепление
полученных знаний
(10мин)
-Продолжим работать!
-Предлагаю выполнить упражнения из учебника №333
(2,4). Посмотрите пожалуйста на доску и обратите
внимание, что каждое задание имеет свой уровень и
оценивается по-разному. На выполнение дается (5 мин).
-Ребята, давайте проверим, как вы справились с
заданием.
-Кто хочет продемонстрировать свое решение (документ
камера).
- Оцените свои работы.
Выполняют упражнения из учебника.
Дают ответ на вопрос учителя. Показывают свое
решение.
Показывают свое решение классу.
Оценивают свою работу согласно критериям.
Этап рефлексии
учебной деятельности
на уроке
(5 мин)
-Давайте подведем итог сегодняшней работы. Берем
оценочный лист и считаем общее количество баллов. И
знакомимся с критериями ниже.
-Какая была цель нашего урока?
Как вы считаете мы достигли поставленную цель?
Значит, наш урок прошел с пользой.
Ребята, Вам понравился сегодняшний урок?
Что необычного было для Вас на уроке?
- Ребята, предлагаю оценить свою работу на “лесенке
успеха”, выбрав тот смайлик, который отражает ваше
настроение после сегодняшнего урока.
Считают количество баллов в оценочных листах.
Отвечают на вопросы учителя.
Дети берут смайлик и прикрепляют на “Лесенку
успеха”.
Записывают д/з.
Домашнее задание: выполнить проверочную работу на
платформе ЯКласс