Презентация "Окружность" 7 класс

Подписи к слайдам:
Окружность.

Знаменская гимназия

Сергеенкова С.Ю.

Геометрия, 7 класс.

Что такое окружность?
  • Что такое окружность?
  • Что называют её центром?
  • Что такое радиус окружности?
  • Что такое диаметр окружности?
  • Что такое хорда окружности?
  • Что называют дугой окружности?
  • Назовите радиусы.
  • Назовите хорды.
  • Чему равен диаметр окружности?
  • На какие дуги окружность разбивают точки С и В?

А

В

О

С

Н

Т

Задача №1. Что будет следовать из равенства треугольников? Дано: АВ = ВС Доказать: ⦟АОВ = ⦟СОD.
  • Из каких фигур можно доказать равенство этих углов?
  • Докажем равенство ∆АОВ и ∆DОС. У них:
  • Что известно по условию?
  • Чем являются отрезки АО, ВО, СО, DО?
  • Значит какие они между собой?
  • По какому признаку треугольники равны?
Задача №2. Что следует из равенства треугольников? Дано: ⦟MOP=⦟NOK Доказать: MN=PK. В какие фигуры входят эти отрезки? Рассмотрим ∆MNO и ∆PKO. У них: 1. МО=NO=PO=KO, как радиусы окружности. Какого элемента в треугольниках не хватает, чтобы говорить о их равенстве? 2. Так как ⦟MOP=⦟NOK и ⦟NOP – часть каждого из этих углов, то оставшиеся части данных углов тоже равны, т.е. ⦟MON=⦟POK. По какому признаку треугольники равны? Задача №3. Дано: АВ =CD, Е – середина АВ, F- середина CD Доказать: ОЕ = ОF. Равенство отрезков можно взять из равных треугольников. Как их получить? Рассмотрим ∆DОС и ∆АОВ. У них: АВ = СD(по условию), АО=ВО=СО=DО как радиусы. ⇒ ∆DОС = ∆АОВ по трём сторонам. Из равенства⇒ Так как Е и F – середины сторон, то ЕА=СF и ⦟А=⦟С, то ∆АОЕ = ∆COF по двум сторонам и углу между ними. ⇒ ОЕ = ОF. Ч.т.д.