Презентация "Лента Мебиуса" 6 класс

Подписи к слайдам:
Лента Мебиуса
  • Выполнила:
  • Ученица 6 класса «Б»
  • МАОУ «Школа №84»
  • Голованова Ольга
Волшебная, нереальная - это эпитеты, которыми можно наградить ленту Мебиуса, одну из самых больших загадок современности. Возможно, именно она скрывает в себе загадки взаимодействия всего существующего в нашей Вселенной. У этой фигуры есть загадочные свойства и вполне реальные области применения. Лента Мебиуса является одной из самых необыкновенных геометрических фигур.
  • Волшебная, нереальная - это эпитеты, которыми можно наградить ленту Мебиуса, одну из самых больших загадок современности. Возможно, именно она скрывает в себе загадки взаимодействия всего существующего в нашей Вселенной. У этой фигуры есть загадочные свойства и вполне реальные области применения. Лента Мебиуса является одной из самых необыкновенных геометрических фигур.
  • Свойства ленты Мёбиуса продолжают быть объектом исследования ученых, практики находят новые способы применения ее в быту и технике, дети, знакомясь с лентой Мёбиуса, расширяют свой кругозор и проявляют интерес к математике.
Интерес вызывает уже само открытие ленты. Два математика, несвязанных между собой, открыли ее почти одновременно. Этими открывателями были Август Фердинанд Мебиус и Иоганн Бенедикт Листинг.
  • Интерес вызывает уже само открытие ленты. Два математика, несвязанных между собой, открыли ее почти одновременно. Этими открывателями были Август Фердинанд Мебиус и Иоганн Бенедикт Листинг.
Немецкий геометр Август Фердинанд Мебиус, ученик «короля математиков» Гаусса. Он был астрономом, как Гаусс. В те времена занятия математикой не встречали поддержки, а астрономия давала достаточно денег, чтобы не думать о них, и оставляла время для собственных размышлений. Мебиус был одним из крупнейших геометров XIX века.
  • Немецкий геометр Август Фердинанд Мебиус, ученик «короля математиков» Гаусса. Он был астрономом, как Гаусс. В те времена занятия математикой не встречали поддержки, а астрономия давала достаточно денег, чтобы не думать о них, и оставляла время для собственных размышлений. Мебиус был одним из крупнейших геометров XIX века.
  • В возрасте 68 лет ему удалось сделать открытие поразительной красоты. Это открытие односторонних поверхностей, одна из которых - лист Мебиуса.
  •  
В 1858 году Мебиус послал в Парижскую академию наук работу «Об объеме многогранников», в которую была включена информация о геометрической поверхности, обладающей совершенно невероятным свойством: она имеет только одну сторону!
  • В 1858 году Мебиус послал в Парижскую академию наук работу «Об объеме многогранников», в которую была включена информация о геометрической поверхности, обладающей совершенно невероятным свойством: она имеет только одну сторону!
  • Позже поверхность была названа лентой Мебиуса. Семь лет он дожидался рассмотрения своей работы и, не дождавшись, опубликовал ее результаты. К сожалению, он так и не успел  оценить  значимость своего  изобретения.  
Некоторые свойства ленты Мебиуса
  • Первое свойство - односторонняя поверхность.
  • Попробуем закрасить одну сторону ленты Мебиуса не переходя через край ленты. Вскоре мы вернемся в то место, откуда начали. Закрашенной оказалась вся лента целиком! Но мы ее не переворачивали, чтобы закрасить с другой стороны, да и не смогли бы перевернуть, потому как поверхность ленты Мёбиуса — односторонняя. «Если кто-нибудь попробует раскрасить «только одну» сторону поверхности ленты Мебиуса, пусть лучше сразу погрузит ее в ведро с краской», пишет Рихард Курант в книге «Что такое математика?» Что же из этого свойства следует? Граница у ленты Мебиуса одна, и не состоит из двух частей, как у обычного кольца.
Второе свойство – непрерывность.
  • Второе свойство – непрерывность.
  • Это свойство можно наблюдать, проделывая следующий эксперимент: если поставить точку на ленте Мебиуса и соединить ее с другой, то при этом не придётся переходить через край «ленты». Разрывов нет, получается полная непрерывность.
  • Третье свойство-ориентированность.
  • Ориентированности у ленты Мёбиуса нет! Если бы человек смог путешествовать по всем изгибам ленты Мёбиуса, то когда он вернулся бы в исходную точку, он превратился бы в своё зеркальное отражение. Путешествие по листу бесконечности могло бы продолжаться вечно.
Четвёртое свойство – связность.
  • Четвёртое свойство – связность.
  • Если какую-нибудь фигуру разрезать от стороны к стороне, то она  распадётся на два отдельных куска. Например, можно разрезать квадрат, из которого получится две части.
  • А можем ли мы одним действием разделить кольцо на две части? Нет, мы должны сделать два разреза. Квадрат– односвязен, кольцо двусвязно, а всяческие решётки, диски с отверстиями и подобные сложные фигуры – многосвязны.
  • Лента Мёбиуса двусвязна, т.к. если разрезать ее вдоль, она превратится не в два отдельных кольца, а в одну целую ленту. Если перекрутить ленту на два оборота, то лента становится односвязной. Три оборота – связность снова равна двум.
Существует немало изобретений, в основе, которых лежит лента Мёбиуса.
  • Существует немало изобретений, в основе, которых лежит лента Мёбиуса.
  • Более 100 лет лента Мёбиуса используется для показа различных фокусов и развлечений.
  • В виде парадоксальной геометрической фигуры можно изготовить лопасти бетономешалки или обычного бытового миксера — энергозатраты снизятся на одну пятую, а качество бетона (или кондитерского крема) улучшится.
  • Лента Мебиуса – неиссякаемый источник для творчества писателей, художников и скульпторов. Её упоминание часто встречается в фантастической и мистической литературе.
  • ЛЕНТА МЁБИУСА ВСЮДУ!
  • Целую серию вариантов листа Мебиуса можно встретить в скульптуре. 
  •      Памятник ленте Мёбиуса  в Москве. А. Налич 
  • г. Минск.  Скверик около Центральной Научной библиотеки имени Якуба Коласа. 
  • Архитектурные решения с использованием идеи ленты Мебиуса:
  • Новая библиотека в Астане, Казахстан
  • Мебель, ювелирные украшения
  • Международный символ переработки представляет собой ленту Мёбиуса.
  • Лента Мебиуса - это занимательная математическая загадка, скрывающая в себе смысл идеалистического понимания устройства Вселенной, ее воздействие на нашу жизнь можно изучать бесконечно.