Презентация "Введение декартовых координат в пространстве. Расстояние между точками. Координаты середины отрезка" 10 класс

Подписи к слайдам:
Введение декартовых координат в пространстве. Расстояние между точками. Координаты середины отрезка. Подготовил учитель ЛСОШ №2 Бесшабашнова Л.ф. Я мыслю – следовательно, я существую. Рене Декарт
  • Рене Декарт родился в 1596 г. в городе Лаэ на юге Франции, в дворянской семье. Отец хотел сделать из Рене офицера. Для этого в 1613 г. он отправил Рене в Париж. Много лет пришлось Декарту пробыть в армии, участвовать в военных походах в Голландии, Германии, Венгрии, Чехии, Италии, в осаде крепости гугенотов Ла-Рошали. Но Рене интересовала философия, физика и математика. Вскоре по приезде в Париж он познакомился с учеником Виета, видным математиком того времени — Мерсеном, а затем и с другими математиками Франции. Будучи в армии, Декарт все свое свободное время отдавал занятиям математикой. Он изучил алгебру немецких, математику французских и греческих ученых.
  • После взятия Ла-Рошали в 1628 г. Декарт уходит из армии. Он ведет уединенный образ жизни с тем, чтобы реализовать намеченные обширные планы научных работ.
  • Декарт был крупнейшим философом и математиком своего времени. Самым известным трудом Декарта является его “Геометрия”. Декарт ввел систему координат, которой пользуются все и в настоящее время. Он установил соответствие между числами и отрезками прямой и таким образом ввел алгебраический метод в геометрию. Эти открытия Декарта дали огромный толчок развитию как геометрии, так и другим разделам математики, оптики. Появилась возможность изображать зависимость величин графически на координатной плоскости, числа - отрезками и выполнять арифметические действия над отрезками и другими геометрическими величинами, а также различными функциями. Это был совершенно новый метод, отличавшийся красотой, изяществом и простотой.
Тема урока

Введение декартовых координат в пространстве. Расстояние между точками. Координаты середины отрезка.

Система координат
  • Системой координат называется совокупность одной, двух, трех или более пересекающихся координатных осей, точки, в которой эти оси пересекаются, – начала координат – и единичных отрезков на каждой из осей. Каждая точка в системе координат определяется упорядоченным набором нескольких чисел – координат. В конкретной невырожденной координатной системе каждой точке соответствует один и только один набор координат.
Декартова система координат
  • Если в качестве координатных осей берутся прямые, перпендикулярные друг другу, то система координат называется прямоугольной (или ортогональной). Прямоугольная система координат, в которой единицы измерения по всем осям равны друг другу, называется ортонормированной (декартовой) системой координат
Система координат на плоскости Система координат в пространстве Координата точки М на плоскости

М

М

1

М

2

х

у

0

(х,у)

Координаты точки М в пространстве
  • М (Х;У;Z)
Таблица

На плоскости

В пространстве

Определение. Системой координат называется совокупность двух пересекающихся координатных осей, точки, в которой эти оси пересекаются, – начала координат – и единичных отрезков на каждой из осей

Определение. Системой координат называется совокупность трех координатных осей, точки, в которой эти оси пересекаются, – начала координат – и единичных отрезков на каждой из осей

2 оси,

ОУ- ось ординат,

ОХ- ось абсцисс

3 оси,

ОХ - ось абсцисс,

ОУ – ось ординат,

ОZ - ось аппликат.

ОХ перпендикулярна ОУ

ОХ перпендикулярна ОУ,

ОХ перпендикулярна ОZ ,

ОУ перпендикулярна ОZ

(О;О)

(О;О;О)

Направление, единичный отрезок

Направление, единичный отрезок

Расстояние между точками.

Расстояние между точками

Координаты середины отрезка.

Координаты середины отрезка

Коордиаты точки Физкультминутка

Все ребята дружно встали.

И на месте зашагали.

На носочках потянулись.

А теперь назад прогнулись.

Как пружинки, мы присели.

И тихонько разом сели.

Построить точки
  • А(9;5;10), В(4;-3;6), С (9;0;0), D(0;0;4), Е(0;8;0),К(-2;4;6)
Решение задач
  • №2
  • №5
  • №9
  • №6
Итог урока Задание на дом
  • П.23-25
  • №7,№10(1)

Спасибо за внимание!