Разработка урока "Квадратные уравнения. Основные понятия. Решение неполных квадратных уравнений"
Разработка урока по алгебре по теме: "Квадратные уравнения. Основные
понятия. Решение неполных квадратных уравнений"
Тема: «Квадратные уравнения. Основные понятия. Решение неполных
квадратных уравнений»
Тип урока: урок изучения нового материала.
Цели урока:
формирование знаний учащихся о способах решения неполных квадратных
уравнений в зависимости от вида неполного квадратного уравнения;
развитие умений сравнивать, выявлять закономерности, обобщать;
развивать навыки самоконтроля;
воспитывать волю и настойчивость для достижения конечных результатов при
решении неполных квадратных уравнений.
Оборудование:
• интерактивная доска;
• таблицы с формулами сокращенного умножения;
• раздаточный материал.
Ход урока:
1. Организационный момент.
2. Вопросы по домашнему заданию
3. Постановка цели урока.
Сегодня на уроке мы продолжим изучение темы «Квадратные уравнения». На
предыдущем уроке мы с вами познакомились с видами квадратных уравнений,
научились преобразовывать уравнения и приводить к квадратным. Целью
сегодняшнего нашего урока будет научиться решать неполные квадратные
уравнения.
Ознакомление с новым материалом.
Дайте определение квадратного уравнения.
Определение. Квадратным уравнением называют уравнение вида
0
2
cbxax
, где
cba ,,
любые действительные числа, причем
0a
.
Данное уравнение называют полным квадратным уравнением. Какое уравнение
будут называть неполным квадратным уравнения? Неполным квадратным
уравнением будут называть уравнение, в котором хотя бы один из
коэффициентов
cb,
равен нулю. Скажите, а может ли
0a
? Нет, потому что
уравнение тогда не будет квадратным. Что значит решить уравнение? Решить
квадратное уравнение - значит найти все его корни или установить, что корней
нет.
Рассмотрим несколько уравнений. На доске записаны три случая неполных
квадратных уравнений. Мы уже умеем их решать. Для этого необходимо
левую часть уравнения представить в виде произведения. Ответьте на вопрос:
когда произведение равно нулю? Произведение равно нулю, если хотя бы один
из множителей равен нулю. Попробуем их решить самостоятельно. Учащиеся
по рядам решают три типа уравнений.
1 случай решения неполных квадратных уравнений. (1ряд).
084
2
xx
;
0124
2
aa
.
08)-4x( x
0)124( aa
.
08)-4x( x
,
0)124( aa
0x
или
084 x
0a
или
0124 a
2x
3
1
a
Ответ: 0; 2. Ответ: 0,
3
1
.
2 случай решения неполных квадратных уравнений. (2ряд)
025
2
с
0213
2
x
.
0)5()5( сс
,
0)7()7(3 xx
,
05 с
или
05 с
,
07 x
или
07 x
,
5с
,
5с
.
7x
,
7x
.
Ответ:
5
. Ответ:
7
.
3 случай решения неполных квадратных уравнений. (3ряд).
04
2
a
,
0
2
a
,
0a
.
Ответ: 0.
Чем воспользовались учащиеся каждого ряда при решении уравнения? Какую
закономерность увидели при написании ответа.
Выводим правила решения неполных квадратных уравнений.
0
2
ax
0,0,0 cba
0
2
bxax
0,0,0 cba
0
2
сax
0,0,0 cba
Один корень
0x
Разложим на множители
0)( baxx
0x
или
0 bax
a
b
xx
21
,0
Преобразуем к виду
cax
2
a
c
x
2
1 случай.
Если
a
c
- отрицательное число,
то корней нет.
Если
a
c
- положительное число,
То
a
c
x
2,1
.
Используя выведенные правила, приступаем к самостоятельной работе по
вариантам. На каждый тип уравнения даются задания базового уровня. Тесты
№ 1-3 подобраны таким образом, чтобы можно было посмотреть решение
аналогичных примеров у соседа или на доске.
Тест № 1.
Цель: научить учащихся решать уравнения вида
0
2
ax
.
Задания для самостоятельной работы
Вариант 1
Вариант 2
Вариант 3
02
2
x
05
2
x
0
3
2
x
04
2
x
07
2
x
0
9
2
x
07
2
x
06
2
x
0
8
2
x
Указания учителя
Список правильных ответов и критерии оценивания возьмите у учителя.
Исправьте ошибки, если они есть. Число набранных баллов поставьте в графу
«Основные задания» оценочного листа. Если вы набрали 3 баллов, то
переходите к следующему тесту. Если же набрано меньше баллов, то решите
задания другого варианта, аналогичные тем, в которых была допущена ошибка.
Набранные баллы поставьте в графу «Корректирующие задания».
Тест № 2
Цель: научиться решать уравнения вида
0
2
bxax
, где
0c
.
Задания для самостоятельной работы
Вариант 1
Вариант 2
Вариант 3
05
2
xx
063
2
xx
0714
2
xx
07
2
xx
0244
2
x
0336
2
xx
012
2
xx
0459
2
x
019
2
xx
Указания учителя
Список правильных ответов и критерии оценивания возьмите у учителя.
Исправьте ошибки, если они есть. Число набранных баллов поставьте в графу
«Основные задания» оценочного листа. Если вы набрали 3балла, то переходите
к следующему учебному элементу. Если же набрано меньше баллов, то решите
задания другого варианта, аналогичные тем, в которых была допущена ошибка.
Набранные баллы поставьте в графу «Корректирующие задания».
Тест № 3.
Цель: научить учащихся решать уравнения вида
0
2
сax
, где
0c
.
Задания для самостоятельной работы
Вариант 1
Вариант 2
Вариант 3
05
2
x
016
2
x
0123
2
x
07
2
x
025
2
x
0455
2
x
012
2
x
064
2
x
0502
2
x
Указания учителя
Список правильных ответов и критерии оценивания возьмите у учителя.
Исправьте ошибки, если они есть. Число набранных баллов поставьте в графу
«Основные задания» оценочного листа. Если вы набрали 3 балла, то переходите
к следующему тесту. Если же набрано меньше баллов, то решите задания
другого варианта, аналогичные тем, в которых была допущена ошибка.
Набранные баллы поставьте в графу «Корректирующие задания».
Тест № 4
Цель: - закрепить умения учащихся решать неполные квадратные уравнения;
- проверить умения учащихся выбирать способ решения неполных
квадратных уравнений в усложненных заданиях.
Указания учителя
Вы прошли I уровень усвоения материала. Теперь вы самостоятельно выбираете
способ решения неполных квадратных уравнений в предложенных заданиях.
Для этого вспомните все способы решения неполных квадратных уравнений.
Пройденных в тестах № 1 - 3.
Задания для самостоятельной работы (оцениваются 2 баллами)
Вариант 1
Вариант 2
Вариант 3
757
2
xx
(
xxx 1332)32()8(
xxx 1210012
2
2
527)3()93( xxx
xxxx 12321
22
102)54()2(
2
xxx
Указания учителя
Список правильных ответов и критерии оценивания возьмите у учителя.
Исправьте ошибки, если они есть. Число набранных баллов поставьте в
графу «Основные задания» оценочного листа. Если вы набрали 4 балл, то
посчитайте количество набранных вами баллов за урок. Если же набрано
меньше баллов, то решите задания другого варианта, аналогичные тем, в
которых была допущена ошибка. Набранные баллы поставьте в графу
«Корректирующие задания».
Подведение итогов.
Молодцы! Вы освоили решение неполных квадратных уравнений
разных уровней сложности. Целью дальнейшей вашей работы является
применение своих знаний и умений при решении неполных квадратных
уравнений в более сложных заданиях.
Учащиеся подводят итоги своей работы, оценивая самостоятельно
согласно набранным баллам. Оценки выставляются в журнал.
Домашнее задание.
• Учебник А.Г.Мордковича «Алгебра 8 класс» стр.135-136.
• Задачник А.Г.Мордковича «Алгебра 8 класс» № 24.16-24.20(в, г), 15.
Алгебра - еще материалы к урокам:
- Конспект урока "Решение задач на смеси, растворы и сплавы методом уравнений" 11 класс
- Конспект урока "Основное свойство алгебраической дроби"
- Конспект урока "Разложение многочленов на множители. Квадрат суммы. Квадрат разности" 7 класс
- Конспект урока "Формула - Ньютона Лейбница"
- Презентация "Применение интеграла к решению физических задач" 11 класс
- Урок-зачёт "Квадратные уравнения. Квадратичная функция"