Презентация "Признаки параллельности двух прямых, теоремы об углах образованных двумя параллельными прямыми"
Подписи к слайдам:
Прямая «с» называется секущей по отношению к прямым «а» и «b», если она пересекает их в двух точках. При пересечении прямых «a» и «b» секущей «с» образуется восемь углов, некоторые на рисунке 1 обозначены цифрами. Некоторые пары этих углов имеют специальные названия:
Накрест лежащие углы: 3 и 5, 4 и 6
Односторонние углы:4 и 5, 3 и 6
Соответственные углы:1 и 5, 4 и 8, 2 и 6,3 и 7.
Рис.1
Теорема №1- Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
- Дано: прямые a и b, АВ- секущая угол 1 и угол 2- накрест лежащие, угол 1 = углу 2 (Рис.3)
- Доказать a || b
- 1 случай Предположим, что 1 = 2 = 90 градусов, т.е. эти углы прямые, получим «а» перпендикулярно АВ и «b» перпендикулярно АВ (Рис.4), следовательно, a||b (т.к. две прямые перпендикулярные к третьей прямой не пересекаются, т.е. параллельны).
- 2 случай
- Предположим, что угол 1 и угол 2 - не прямые. Из середины О отрезка АВ проведем перпендикуляр ОН к прямой «a» и продолжим его до пересечения с прямой «b» , точку пересечения ОН с прямой «b» обозначим Н1 (Рис. 5).
- Получим ОНА = ОН1В по 2 признаку равенства треугольников (углы 3 и 4 вертикальные, т.к. получены при пересечении двух прямых АВ и НН1, а вертикальные углы равны друг другу, т.е. угол 3 =угол 4, АО = ОВ, т.к. О - середина АВ, угол 1 = угол 2 по условию), следовательно, угол 5 =угол 6, значит, угол 6 - прямой, также как и угол 5 (т.к по построению ОН ).
- Получаем, НН1 перпендикулярен «а» как и НН1 к «b», значит a||b (т.к. две прямые перпендикулярные к третьей прямой не пересекаются, т.е. параллельны). Что и требовалось доказать.
- Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
- Дано: прямые a и b, АВ - секущая, угол 1 и угол 2 - соответственные, отсюда угол 1 = 2 (Рис.6).
- Доказать: a||b
- Доказательство:
- По условию угол 1 = угол 2 и угол 2 = угол 3, т.к.они вертикальные, откуда угол 1 = угол 3, при этом углы 1 и 3 накрест лежащие, следовательно, (см. теорему 1). Что и требовалось доказать.
- Если при пересечении двух прямых секущей сумма односторонних углов равна 180 градусам, то прямые параллельны.
- Дано: прямые и , АВ - секущая, угол 1 и угол 2 - односторонние,угол 1 + угол 2 = 180 градусом (Рис.7).
- Доказать:a||b
- Доказательство:
- Углы 3 и угол 2 - смежные, значит по свойству смежных углов угол 3 + угол 2 = 180 градусов, откуда 3 угол = 180 градусов – 2 угол, при этом 1 угол + 2 угол = 180 градусов, откуда угол 1 = 180 градусов – 2 угол, тогда 1 угол = 3 угол, а углы 1 и 3 накрест лежащие, следовательно a||b, (см. теорему 1). Что и требовалось доказать.
- Во всякой теореме различают две части: Условие и Заключение. Условие теоремы-это то, что дано, а заключение-то, что требуется доказать.
- Рассмотрим, например, теорему, выражающую признак параллельности двух прямых секущей накрест лежащие углы равны, то прямые параллельны. В этой теореме условием является первая часть утверждения: «при пересечении двух прямых секущей накрест лежащие углы равны» (это дано), а заключением-вторая часть: «прямые параллельны» (это требуется доказать)
- Теоремой обратной данной называется такая теорма, в которой условием является заключение данной теоремы ,а заключением условием данной теоремы.
- Для этого докажем теоремы обратные трем теоремам
- Если две параллельные прямые пересечены секущей, накрест лежащие углы равны.
- Если две параллельные прямые пересечены секущей, то соответственные углы равны.
- Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
- Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
- Пусть параллельные прямые a и b пересечены секущей MN (c). Докажем, что накрест лежащие углы 3 и 6 равны. Допустим, что углы 3 и 6 не равны. Отложим от луча MN угол PMN, равный углу 6, так, чтобы угол PMN и угол 6 были накрест лежащими углами при пересечении прямых МР и b секущей MN. По построению эти накрест лежащие углы равны, поэтому МР||b. Мы выяснили, что через точку М проходят две прямые (прямые a и МР), параллельные прямой b. Но это противоречит аксиоме параллельных прямых. Значит, наше допущение неверно и угол 3 равен углу 6.
Математика - еще материалы к урокам:
- Самостоятельная работа "Рациональные выражения" 8 класс (Макарычев)
- Олимпиадные задания по математике для начальных классов
- Виды заданий для формирования регулятивных УУД на уроках математики в начальных классах
- Тренировочная работа по математике (профильный уровень) с ответами
- Рабочая программа по математике 1 класс на 2020-2021 учебный год УМК «Школа России»
- Презентация "Проценты" 5 класс (Мерзляк)