Презентация "История развития геометрии" 7 класс
Подписи к слайдам:
История развития геометрии
- Автор: Артамонова Надежда Ивановна,
- учитель математики
- МБВСОУ ЦО № 224
- г.Екатеринбурга
- Презентация к урокам геометрии в 7 классе
- Геометрия - одна из самых древних наук, ее возраст исчисляется тысячелетиями. Геометрия (греч. geometria, от ge - Земля и metreo - мерю), раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. В геометрии много формул, фигур, теорем, задач, аксиом. Они вечны, так как на них запечатлены великие идеи, не проходящие идеи.
- Древний Египет считается первым государством, оставившим самые ранние математические тексты. Древние греки, достижения которых лежат в основе современной науки, считали себя учениками египтян. Геродот писал: «Египетские жрецы говорили, что царь разделил землю между всеми египтянами, дав каждому по равному прямоугольному участку; из этого он создал себе доходы, приказав ежегодно вносить налог. Если же река отнимала что-нибудь, то царь посылал людей, которые должны. Измерить участок и уменьшить налог». Первой книгой, содержащей геометрические задачи, считается папирус Райнда (в некоторых источниках Г.Ринла), который датируется ХХ веком до нашей эры.
- Возникновение и развитие геометрии
- Геометрия , по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве. Этот процесс привёл, наконец, к качественному скачку. Геометрия превратилась в самостоятельную математическую науку: появились систематические её изложения, где её предложения последовательно доказывались.
- Великий ученый Фалес Милетский основал одну из прекраснейших наук – геометрию.
- Фалес Милетский имел титул одного из семи мудрецов Греции, он был поистине первым философом, первым математиком, астрономом и вообще первым по всем наукам в Греции.
- VI век до нашей эры
- Фалес решил следующие задачи.
- Предложил способ определения расстояния до корабля на море.
- Вычислил высоту египетской пирамиды Хеопса по длине отбрасываемой тени.
- Доказал равенство углов при основании равнобедренного треугольника.
- Ввел понятие движения, в частности поворота.
- Доказал второй признак равенства треугольников и впервые применял его в задаче.
- Теорема Фалеса о равных отрезках, отсекаемых параллельными прямыми на сторонах угла.
- Задача об измерении высоты пирамиды.
- Однажды, отправившись по торговым делам в Египет, он задержался там на несколько лет. Случилось так, что фараон пожелал узнать высоту пирамиды, но никто не мог ее определить. Фалес смог легко справиться с задачей.
- Выбрав день и час, когда его собственная тень стала равной его росту, он измерил тень, отбрасываемую пирамидой, и установил, что длина тени от центра основания пирамиды до ее вершины была равна высоте этой пирамиды. Фараон и его приближенные изумились такому достаточно простому решению.
- Центральное место среди античных трудов по геометрии занимают составленные около 300 до н. э. «Начала» Евклида. Этот труд более двух тысячелетий считался образцовым изложением в духе аксиоматического метода: все положения выводятся логическим путём из небольшого числа явно указанных и не доказываемых предположений — аксиом.
- Сочинение Евклида «Начала» почти 2000 лет служило основной книгой, по которой изучали геометрию.
- В «Началах» были систематизированы известные к тому времени геометрические сведения, и геометрия впервые предстала как математическая наука.
- Своими учебниками (то есть книгами «Начала») Евклид охватил всю элементарную математику той эпохи. «Начала» состоят из 13 книг. Первые четыре посвящены геометрии на плоскости. Каждую книгу он начинает с пяти аксиом и постулатов. Вспомните их! В первой книге излагается планиметрия прямолинейных фигур: устанавливаются их свойства, заканчивается прямой и обратной теоремой Пифагора. Во второй книге излагается основы геометрической алгебры. Третья книга посвящена свойствам круга, в четвертой строятся правильные п-угольники при п = 3, 4, 5, 6, 10, 15. Исключительное изящное построение правильного 15-угольника принадлежит самому Евклиду. 11 книга посвящена стереометрии. Она содержит основные теоремы о прямых и плоскостях в трехмерном пространстве, задачи на построение, например как опустить перпендикуляр из данной точки на данную плоскость. 12 книга посвящена решению задачи о квадратуре круга. 13 книга излагает учение о правильных многогранниках. В целом творение Евклида величественно. Созданная им система просуществовала более двух тысяч лет. Вплоть до XX века геометрию преподавали по популярным переводам этой книги. Но последующие математики не во всем соглашались с системой аксиом и определений и пытались ее улучшить. Некоторые оказались ненужные, например, что прямые углы равны. Это очевидно из других аксиом. Особенное неудовлетворение всегда вызывал пятый постулат, утверждавший: что через любую точку плоскости можно провести только одну прямую параллельную данной. Многие считали ее теоремой и пытались ее неудачно доказать.
- Древняя Греция
- Средние века немного дали геометрии, и следующим великим событием в её истории стало открытие Декартом в XVII веке координатного метода («Рассуждение о методе», 1637). Точкам сопоставляются наборы чисел, это позволяет изучать отношения между формами методами алгебры. Так появилась аналитическая геометрия, изучающая фигуры и преобразования, которые в координатах задаются алгебраическими уравнениями. Примерно одновременно с этим Паскалем и Дезаргом начато исследование свойств плоских фигур, не меняющихся при проектировании с одной плоскости на другую. Этот раздел получил название проективной геометрии. Метод координат лежит в основе появившейся несколько позже дифференциальной геометрии, где фигуры и преобразования все ещё задаются в координатах, но уже произвольными достаточно гладкими функциями.
- В 1826 году великий русский математик Николай Иванович Лобачевский поставил точку в проблеме пятого постулата. Вместо него он принял допущение, согласно которому в плоскости можно построить, по крайней мере, две прямые, не пересекающиеся. Дальнейшие его рассуждения привели его к новой безупречной геометрической системе, называемой сейчас геометрией Лобачевского. В его геометрии сумма углов треугольника меньше 180°, в ней нет подобных фигур. В ней существуют треугольники с попарно параллельными сторонами.
- Независимо от Лобачевского в 1832 ту же геометрию построил Я. Больяй (те же идеи развивал К. Гаусс, но он не опубликовал их). Лобачевский рассматривал свою геометрию как возможную теорию пространственных отношений; однако она оставалась гипотетической, пока не был выяснен (в 1868) её реальный смысл и тем самым было дано её полное обоснование. Переворот в геометрии, произведённый Лобачевским, по своему значению не уступает ни одному из переворотов в естествознании, и недаром Лобачевский был назван "Коперником геометрии". В его идеях были намечены три принципа, определившие новое развитие геометрии. Первый принцип заключается в том, что логически мыслима не одна евклидова геометрия , но и другие "геометрии". Второй принцип - это принцип самого построения новых геометрических теорий путём видоизменения и обобщения основных положений евклидовой геометрии. Третий принцип состоит в том, что истинность геометрической теории, в смысле соответствия реальным свойствам пространства, может быть проверена лишь физическим исследованием и не исключено, что такие исследования установят, в этом смысле, неточность евклидовой геометрии. Современная физика подтвердила это. Однако от этого не теряется математическая точность евклидовой геометрии, т.к. она определяется логической состоятельностью (непротиворечивостью) этой геометрии. Точно так же в отношении любой геометрической теории нужно различать их физическую и математическую истинность; первая состоит в проверяемом опытом соответствии действительности, вторая - в логической непротиворечивости. Лобачевский дал, т. о., материалистическую установку философии математики
- Никола́й Ива́нович Лобаче́вский (20 ноября (1 декабря) 1792, Нижний Новгород — 12 (24) февраля 1856, Казань), великий русский математик, создатель геометрии Лобачевского, деятель университетского образования и народного просвещения. Известный английский математик Уильям Клиффорд назвал Лобачевского «Коперником геометрии».
- Юбилейные медали
- Геометрические фигуры вокруг нас
- Геометрия: Учебник для 7-9 классов общеобразовательных учреждений. Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.-М.: Просвещение 2011
- www.yandex.ru
- www.allday.ru
- www.google.ru
История - еще материалы к урокам:
- Презентация на тему "Поход Александра Македонского на Восток" 5 класс
- Презентация "Путешествие в Древнюю Грецию" 5 класс
- Повторительно - обобщающий урок "Путешествие в Древнюю Грецию" 5 класс
- Разработка урока "Вторая война Рима с Карфагеном (218 – 201 гг. до н.э.)" 5 класс
- План - конспект урока "Будда и основные положения его учения. Буддизм в России" 11 класс
- Конспект урока "Новые тенденции в экономическом и политическом развитии стран Запада в конце ХIХ века" 9 класс