Презентация "Разложение разности квадратов на множители" 7 класс

Подписи к слайдам:
  • “Математику нельзя изучать, наблюдая, как это делает сосед.” А.Нивен
“Разложение разности квадратов на множители”
  • “Разложение разности квадратов на множители”
Выучить формулы разности квадратов
  • Выучить формулы разности квадратов
  • Выполнять разложение разности квадратов на множители
  • Применять формулы разности квадратов для тождественных преобразований выражений
  • Научиться решать уравнения, используя формулу разности квадратов
1. Прочитать выражение
  • 1. Прочитать выражение
  • (5-3a)²; 5²-(3a)²; (5-3a)(5+3a)
  • 2. Представить выражение в виде квадрата одночлена
  • 9x²; 100y⁴; 16f⁴b⁸; 0,49b²c¹²; a⁴b⁶
  • 3. Возвести в квадрат одночлен
  • 5a; 0,2x³; x²y³; 0,1a⁴y⁵; x⁷y²c
1. Чему равна разность двух выражений?
  • 1. Чему равна разность двух выражений?
  • 2. По какой формуле возводиться в квадрат сумма и разность двух выражений?
  • 3. Какие преобразования можем выполнять, используя формулу разности квадратов?
Раскладывать на множители
  • Раскладывать на множители
  • Сокращенно умножать разность двух выражений на их сумму
  • Решать уравнения
  • Упрощать выражения
  • Применять формулы для вычисления значения выражений
1. 41²-31²
  • 1. 41²-31²
  • 100-А;720-Е; 270-К
  • 2. 124²-76²
  • 960-А; 920-Б; 9600-В
  • 3. 12,5²-11,5²
  • 230-Л; 23-С; 24-К
  • 4. 0,849²-0,151²
  • 0,698-Л; 698-М; 6,98-Н
  • 5.( )²- ( )²
  • 1-Н; -И; -Р
  • 6.
  • -Г; -В; -Д
  • 52²-42²
  • 940-Н; 950-О; 94-Т
  • 2. 114²-86²
  • 5400-О; 5600-Ь; 5500-Ф
  • 3. 17,5²-16,5²
  • 320-Я; 340-Ш; 34-Ю
  • 4. 0,731²-0,269²
  • 0,462-Т; 0,472-П; 4,72-С
  • 5. ( )²-( )²
  • 1-С; -О; 3-Х;
  • 6.
  • -Н; -Р; -Д
Дата рождения: ок. 325 года до н.э.
  • Дата рождения: ок. 325 года до н.э.
  • Место рождения: или Афины или Тир
  • Дата смерти: до 265 года до н.э.
  • Место смерти: Александрия Эллинистический
  • Египет
  • Научная сфера: математика
  • Известен как: «Отец Геометрии»
  • Статуя Евклида в Оксфордском университетском музее естественной истории
Дата рождения: 25 декабря 1642 (4 января 1643)
  • Дата рождения: 25 декабря 1642 (4 января 1643)
  • Место рождения: Вулсторп, Линкольншир, Королевство Англия
  • Дата смерти: 20 марта 1727 (31 марта 1727) (84 года)
  • Место смерти: Кенсингтон, Мидлсекс, Англия, Королевство Великобритания
  • Научная сфера: физика, математика, астрономия
  • Альма-матер: Кембриджский университет (Тринити-колледж)
  • Ньютон в молодости
№888(д)
  • №888(д)
  • №890(и)
  • №891(в,г)
  • №895(г,е)
№888(д) : 0,2
  • №888(д) : 0,2
  • №890(и) : не имеет решения, так как x²≥0
  • №891(в;г) : , - ; 1,75 , -1,75
  • №895(г;е) : -3b*(10a-3b) ; (5b³-x)(x-3b³)
На выполнение заданий отводится 15 минут
  • На выполнение заданий отводится 15 минут
А1. Выполнить умножение: (x-3y)(x+3y)
  • А1. Выполнить умножение: (x-3y)(x+3y)
  • 1)x²-3y; 2)x²-6y+9y²; 3)x²-9y²; 4)3y²-x²
  • A2. Упростить выражение: (a-2)(a+2)+4
  • 1)a²-4; 2)a²; 3)4; 4)a²+8
  • A3. Разложить на множители: 49-9x²
  • 1)(7-3x)(7+3x); 2)(3x-7)(3x+7); 3)(7-3x)(7-3x); 4)(7-3x)²
  • A4.Представить в виде произведения: -64+25y²
  • 1)(-8+5y)(8-5y); 2)(5y-8)(5y+8); 3)(8-5y)(8+5y)
  • 4)(-8-5y)(8+5y)
Б1. Упростить выражение: (2a-5b)(2a+5b)+(6b-3a)(6b+3a)
  • Б1. Упростить выражение: (2a-5b)(2a+5b)+(6b-3a)(6b+3a)
  • Б2. Найти корень уравнения:
  • (6x-1)(6x+1)-4x(9x+3)=-4
Повторить формулу разности квадратов
  • Повторить формулу разности квадратов
  • №892(г-и), 897(а,б)
Урок окончен
  • Урок окончен