Подготовка к ЕГЭ. Анализ графиков

Подписи к слайдам:
Анализ графиков Подготовка к ЕГЭ За­да­ние 1 № 101. Может ли график зависимости пути от времени иметь следующий вид?

1) да

2) нет

3) может, если тра­ек­то­рия пря­мо­ли­ней­ная

4) может, если тело воз­вра­ща­ет­ся в ис­ход­ную точку

  • Путь — это фи­зи­че­ская ве­ли­чи­на, по­ка­зы­ва­ю­щая прой­ден­ное телом рас­сто­я­ние. Иначе го­во­ря, это длина прой­ден­но­го участ­ка тра­ек­то­рии. По опре­де­ле­нию, путь есть ве­ли­чи­на по­ло­жи­тель­ная, ко­то­рая может толь­ко воз­рас­тать со вре­ме­нем, так что пред­став­лен­ный гра­фик не может изоб­ра­жать за­ви­си­мость пути от вре­ме­ни.
  • Пра­виль­ный ответ: 2.
За­да­ние 1 № 102. Мяч, бро­шен­ный вер­ти­каль­но вверх, па­да­ет на землю. Най­ди­те гра­фик за­ви­си­мо­сти от вре­ме­ни про­ек­ции ско­ро­сти на вер­ти­каль­ную ось, на­прав­лен­ную вверх.

1) 1

2) 2

3) 3

4) 4

Мяч после брос­ка дви­жет­ся с по­сто­ян­ным уско­ре­ни­ем сво­бод­но­го па­де­ния, на­прав­лен­ным вниз.

Сле­до­ва­тель­но, про­ек­ция ско­рости долж­на умень­шать­ся со вре­ме­нем по ли­ней­но­му за­ко­ну, 

гра­фик за­ви­си­мо­сти её от вре­ме­ни пред­став­лен на ри­сун­ке 2.

Пра­виль­ный ответ: 2.

За­да­ние 1 № 103. Мяч бро­шен с вер­ши­ны скалы без на­чаль­ной ско­ро­сти. Най­ди­те гра­фик за­ви­си­мо­сти мо­ду­ля пе­ре­ме­ще­ния от вре­ме­ни. Со­про­тив­ле­ни­ем воз­ду­ха пре­не­бречь.
  • За­да­ние 1 № 103. Мяч бро­шен с вер­ши­ны скалы без на­чаль­ной ско­ро­сти. Най­ди­те гра­фик за­ви­си­мо­сти мо­ду­ля пе­ре­ме­ще­ния от вре­ме­ни. Со­про­тив­ле­ни­ем воз­ду­ха пре­не­бречь.
  • 1) 1
  • 2) 2
  • 3) 3
  • 4) 4

По­сколь­ку мяч бро­шен с вер­ши­ны скалы без на­чаль­ной ско­ро­сти, а со­про­тив­ле­ни­ем воз­ду­ха можно пре­не­бречь, за­ви­си­мость мо­ду­ля пе­ре­ме­ще­ния от вре­ме­ни долж­на иметь сле­ду­ю­щий вид:

Ис­ко­мая за­ви­си­мость пред­став­ле­на на ри­сун­ке 4. Кроме того, мо­дуль есть ве­ли­чи­на по­ло­жи­тель­ная, этому кри­те­рию также удо­вле­тво­ря­ет толь­ко гра­фик под но­ме­ром 4.

Пра­виль­ный ответ: 4.

За­да­ние 1 № 104. Ав­то­мо­биль дви­жет­ся по пря­мой улице.

На гра­фи­ке пред­став­ле­на за­ви­си­мость ско­ро­сти ав­то­мо­би­ля от вре­ме­ни.

 В каком ин­тер­ва­ле вре­ме­ни мак­си­ма­лен мо­дуль уско­ре­ния?

 

1) от 0 до 10 с

2) от 10 до 20 с

3) от 20 до 30 с

4) от 30 до 40 с

За­да­ние 1 № 104. Ав­то­мо­биль дви­жет­ся по пря­мой улице.

На гра­фи­ке пред­став­ле­на за­ви­си­мость ско­ро­сти ав­то­мо­би­ля от вре­ме­ни.

 В каком ин­тер­ва­ле вре­ме­ни мак­си­ма­лен мо­дуль уско­ре­ния?

 1) от 0 до 10 с

2) от 10 до 20 с

3) от 20 до 30 с

4) от 30 до 40 с

На всех рас­смат­ри­ва­е­мых ин­тер­ва­лах вре­ме­ни ско­рость ав­то­мо­би­ля ме­ня­ет­ся рав­но­мер­но, сле­до­ва­тель­но уско­ре­ние на каж­дом ин­тер­ва­ле по­сто­ян­но. Все ис­сле­ду­е­мые ин­тер­ва­лы оди­на­ко­вы по дли­тель­но­сти, по­это­му мак­си­маль­но­му мо­ду­лю уско­ре­ния со­от­вет­ству­ет мак­си­маль­ный мо­дуль из­ме­не­ния ско­ро­сти в те­че­ние ин­тер­ва­ла (самый боль­шой угол на­кло­на). Из гра­фи­ка видно, что это ин­тер­вал от 10 до 20 с.

Пра­виль­ный ответ: 2.

За­да­ние 1 № 106. По гра­фи­ку за­ви­си­мо­сти мо­ду­ля ско­ро­сти тела от вре­ме­ни, пред­став­лен­но­го на ри­сун­ке, опре­де­ли­те путь, прой­ден­ный телом от мо­мен­та вре­ме­ни 0 с до мо­мен­та вре­ме­ни 2 с.

1) 1 м

2) 2 м

3) 3 м

4) 4 м

За­да­ние 1 № 106. По гра­фи­ку за­ви­си­мо­сти мо­ду­ля ско­ро­сти тела от вре­ме­ни, пред­став­лен­но­го на ри­сун­ке, опре­де­ли­те путь, прой­ден­ный телом от мо­мен­та вре­ме­ни 0 с до мо­мен­та вре­ме­ни 2 с.

1) 1 м

2) 2 м

3) 3 м

4) 4 м

Для того чтобы по гра­фи­ку мо­ду­ля ско­ро­сти найти путь, прой­ден­ный телом за не­ко­то­рый ин­тер­вал вре­ме­ни, не­об­хо­ди­мо вы­чис­лить пло­щадь под ча­стью гра­фи­ка, со­от­вет­ству­ю­щей этому ин­тер­ва­лу вре­ме­ни (в еди­ни­цах про­из­ве­де­ния ве­ли­чин, от­ло­жен­ных по осям ко­ор­ди­нат). В ин­тер­ва­ле вре­ме­ни от 0 С до 2 с ав­то­мо­биль про­шел путь

При­ме­ча­ние: В прин­ци­пе, ин­те­ре­су­ю­щий нас уча­сток (от 0 до 2 с) не обя­за­тель­но раз­би­вать на два, пло­щадь под гра­фи­ком можно по­счи­тать, как пло­щадь тра­пе­ции:

Пра­виль­ный ответ: 3.

Для того чтобы по гра­фи­ку мо­ду­ля ско­ро­сти найти путь, прой­ден­ный ав­то­мо­би­лем за не­ко­то­рый ин­тер­вал вре­ме­ни, не­об­хо­ди­мо вы­чис­лить пло­щадь под ча­стью гра­фи­ка, со­от­вет­ству­ю­щей этому ин­тер­ва­лу вре­ме­ни (в еди­ни­цах про­из­ве­де­ния ве­ли­чин, от­ло­жен­ных по осям ко­ор­ди­нат). В ин­тер­ва­ле от мо­мен­та вре­ме­ни 0 с до мо­мен­та вре­ме­ни 5 с после на­ча­ла дви­же­ния ав­то­мо­биль про­шел путь

Дру­гой спо­соб ре­ше­ния за­клю­ча­ет­ся в ана­ли­зе каж­до­го участ­ка гра­фи­ка в от­дель­но­сти, опре­де­ле­ния из гра­фи­ка на­чаль­ных ско­ро­стей и уско­ре­ний на каж­дом этапе и ис­поль­зо­ва­ния стан­дарт­ных ки­не­ма­ти­че­ских фор­мул для пути.

Пра­виль­ный ответ: 3.