Презентация "Применение производной в науке и в жизни" скачать бесплатно


Презентация "Применение производной в науке и в жизни"


Подписи к слайдам:
Презентация на тему: «Применение производной в науке и в жизни»

Презентация на тему: «Применение производной в науке и в жизни»

Выполнила студентка группы ПхИ-17

Долженкова Анастасия

Сведения из истории появления производной:

Лозунгом многих математиков XVII в. был: «Двигайтесь вперёд, и вера в правильность результатов к вам придёт».

Термин «производная» - ( франц. deriveе - позади, за) ввёл в 1797 г. Ж . Лагранж. Он же ввёл современные обозначения y ' , f ‘.

обозначение lim –сокращение латинского слова limes (межа, граница). Термин «предел» ввёл И. Ньютон.

• И. Ньютон называл производную флюксией, а саму функцию - флюентой.

Г. Лейбниц говорил о дифференциальном отношении и обозначал производную так:

Лагранж Жозеф Луи (1736-1813)

французский математик и механик

Ньютон:

« Был этот мир глубокой тьмой окутан. Да будет свет! И вот явился Ньютон.» А.Поуг.

Исаак Ньютон (1643-1727) один из создателей дифференциального исчисления.

Главный его труд- «Математические начала натуральной философии»-оказал колоссальное влияние на развитие естествознания, стал поворотным пунктом в истории естествознания.

Ньютон ввёл понятие производной, изучая законы механики, тем самым раскрыл её механический смысл.

Что называется производной функции?

Производной функции в данной точке называется предел отношения приращения функции в этой точке к приращению аргумента, когда приращение аргумента стремится к нулю.

Физический смысл производной.

  • Скорость есть производная от пути по времени:
  • v(t) = S′(t)

  • Ускорение есть производная скорости по времени:

a(t) = v′(t) = S′′(t)

Геометрический смысл производной:

•Угловой коэффициент касательной к графику функции равен производной этой функции, вычисленной в точке касания.

f′(x) = k = tga

Производная в электротехнике:

В наших домах, на транспорте, на заводах : всюду работает электрический ток. Под электрическим током понимают направленное движение свободных электрически заряженных частиц.

Количественной характеристикой электрического тока является сила тока.

В  цепи электрического тока электрический заряд меняется с течением времени по закону q=q (t). Сила тока I есть производная заряда q по времени.

В электротехнике в основном используется работа переменного тока.

Электрический ток, изменяющийся со временем, называют переменным. Цепь переменного тока может содержать различные элементы: нагревательные приборы, катушки, конденсаторы.

Получение переменного электрического тока основано на законе электромагнитной индукции, формулировка которого содержит производную магнитного потока.

Производная в химии:

  • И в химии нашло широкое применение дифференциальное исчисление для построения математических моделей химических реакций и последующего описания их свойств.
  • Химия – это наука о веществах, о химических превращениях веществ.
  • Химия изучает закономерности протекания различных реакций.
  • Скоростью химической реакции называется изменение концентрации реагирующих веществ в единицу времени.
  • Так как скорость реакции v непрерывно изменяется в ходе процесса, ее обычно выражают производной концентрации реагирующих веществ по времени.

Производная в географии:

Идея социологической модели Томаса Мальтуса состоит в том, что прирост населения пропорционально числу населения в данный момент времени t через N(t), . Модель Мальтуса неплохо действовала для описания численности населения США с 1790 по 1860 годы. Ныне эта модель в большинстве стран не действует.

Интеграл и его применение:

Немного из истории:

История понятия интеграла уходит корнями к математикам Древней Греции и Древнего Рима .

Известны работы учёного Древней Греции - Евдокса Книдского (ок.408—ок.355 до н.э.) на нахождение объёмов тел и вычисления площадей плоских фигур.

Большое распространение интегральное исчисление получило в XVII веке. Учёные: Г. Лейбниц (1646-1716) и И . Ньютон (1643-1727) открыли независимо друг от друга и практически одновременно формулу, названную в последствии формулой Ньютона - Лейбница, которой мы пользуемся. То, что математическую формулу вывели философ и физик никого не удивляет, ведь математика—язык, на котором говорит сама природа.

Большое распространение интегральное исчисление получило в XVII веке. Учёные: Г. Лейбниц (1646-1716) и И . Ньютон (1643-1727) открыли независимо друг от друга и практически одновременно формулу, названную в последствии формулой Ньютона - Лейбница, которой мы пользуемся. То, что математическую формулу вывели философ и физик никого не удивляет, ведь математика—язык, на котором говорит сама природа.

Символ введен

Символ введен

Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова сумма). Само слово интеграл придумал Я. Бернулли (1690 г.). Вероятно, оно происходит от латинского integero, которое переводится как приводить в прежнее состояние, восстанавливать. Пределы интегрирования указал уже Л.Эйлер (1707-1783). В 1697 году появилось название новой ветви математики - интегральное исчисление. Его ввёл Бернулли.

В математическом анализе интегралом функции называют расширение понятия суммы. Процесс нахождения интеграла называется интегрированием. Этот процесс обычно используется при нахождений таких величин как площадь, объём, масса, смещение и т. д., когда задана скорость или распределение изменений этой величины по отношению к некоторой другой величине (положение, время и т. д.).

В математическом анализе интегралом функции называют расширение понятия суммы. Процесс нахождения интеграла называется интегрированием. Этот процесс обычно используется при нахождений таких величин как площадь, объём, масса, смещение и т. д., когда задана скорость или распределение изменений этой величины по отношению к некоторой другой величине (положение, время и т. д.).

Что такое интеграл?

Интеграл — одно из важнейших понятий математического анализа, которое возникает при решении задач о нахождении площади под кривой, пройденного пути при неравномерном движении, массы неоднородного тела, и т. п., а также в задаче о восстановлении функции по её производной

Ученые стараются все физические явления выразить в виде математической формулы. Как только у нас есть формула, дальше уже можно при помощи нее посчитать что угодно. А интеграл — это один из основных инструментов работы с функциями.

Ученые стараются все физические явления выразить в виде математической формулы. Как только у нас есть формула, дальше уже можно при помощи нее посчитать что угодно. А интеграл — это один из основных инструментов работы с функциями.

Методы интегрирования:

  • Табличный.
  • Сведение к табличному преобразованием подынтегрального выражения в сумму или разность.
  • Интегрирование с помощью замены переменной (подстановкой).
  • Интегрирование по частям.

Применение интеграла:

  • Математика
  • Вычисления S фигур.
  • Длина дуги кривой.
  • V тела на S параллельных сечений.
  • V тела вращения и т.д
  • Физика
  • Работа А переменной силы.
  • S – (путь) перемещения.
  • Вычисление массы.
  • Вычисление момента инерции линии, круга, цилиндра.
  • Вычисление координаты центра тяжести.
  • Количество теплоты и т.д.