Презентация "Решение неполного уравнения третьей степени"
Подписи к слайдам:
«Решение неполного уравнения третьей степени»
Теоретическая часть 1. Производная функции 2. Формула П.Л. Чебышева 3. Номограммы - графическое представление функции от нескольких переменных, позволяющее с помощью простых геометрических операций (например, прикладывания линейки) исследовать функциональные зависимости без вычислений. 4. Алгоритм уточнения корней многочлена, если известны грубо приближенно два значения его корня Пример решения уравнения третьей степени Пусть дано уравнение Решение 1. 13-51+1=-3 и значит, целых корней нет.
х |
|
-3 |
|
-2 |
|
-1 |
5 |
0 |
|
1 |
|
2 |
|
3 |
х |
|
-3 |
|
-2 |
|
-1 |
5 |
0 |
|
1 |
|
2 |
|
3 |
Ответ:
Решение 2.
Ответ:
Решение 3. Применим формулу П.Л. Чебышева
Коэффициенты |
1 |
0 |
-5 |
1 |
Вычисления |
1 |
0+0,2*1 |
-5+0,2*(0,2) |
1+(-4,96)*0,2 |
Результат |
1 |
0,2 |
-4,96 |
0,008 |
0,008.
Ответ: -2,33; 0,2; 2,13.
Решение 4.
.
.
Ответ: -2,3; 0,25; 2,2.
Проверим полученные корни с помощью Интернет ресурсов: сайта
Решение уравнений бесплатно - Калькулятор Онлайн Обычные уравнения
Ответ: 0,2; 2,13; -2,33.
Уточним один из корней многочлена, полученные в Решении 4 с помощью алгоритма уточнения корней многочлена
Возьмём , .
, ,
.
Можно продолжить уточнение приближенного значения корня. Примем за приближенного значения корня число .
Вывод
Способ решения |
Недостатки |
Преимущества |
Построение графика функции и определение приближенного значения нулей функции с помощью таблицы зависимости х от у. |
Времяемкий, встречается проблема оценивания значения иррационального числа. Погрешность в нахождении одного из трех корней. |
Наглядный.Интересно оценивание корней с помощью свойства непрерывных функций (знакопостоянство и нули функции). Может быть применен к большинству алгебраических уравнений. |
Графический способ решения уравнения |
Неточный. Погрешность в нахождении одного из трех корней. |
Наглядный, дает право выбора введения вспомогательных функций. |
Применение формулы П.Л. Чебышева |
Громоздкие вычисления, чтобы их избежать прибегли к теории многочленов для нахождения двух корней. |
Корни найдены достаточно точно. |
Применение номограммы |
Времяемкий, требует точности в построении графика функции, в масштабе, аккуратности. |
Корни найдены достаточно точно. |
Математика - еще материалы к урокам:
- Самостоятельная работа "Основное уравнение МКТ" 10 класс
- Конспект урока по математике "Число 3. Треугольник" 1 класс
- Презентация "Миллиметр и метр" 3 класс
- Презентация "Поупражняемся в вычислениях" 3 класс
- Презентация "Королевство Дробей" 5 класс
- Презентация "Числа 1-5. Состав числа 5 из двух слагаемых" 1 класс