Презентация "Реактивное движение" 9 класс
Подписи к слайдам:
Реактивное движение
- Ученика 9в класса
- Багдасаряна Авета
- Согласно третьему закону Ньютона:
- F1 = - F2,
- где F1 – сила, с которой ракета действует на раскаленные газы, а F2 – сила, с которой газы отталкивают от себя ракету.
- Модули этих сил равны: F1 = F2.
- Именно сила F2 является реактивной силой. Рассчитаем скорость, которую может приобрести ракета.
- Если импульс выброшенных газов равен Vг•mг, а импульс ракеты Vр•mр, то по закону сохранения импульса, получаем:
- Vг•mг = Vр•mр,
- Откуда скорость ракеты:
- Vр = Vг•mг /mр
- Идея использования ракет для космических полетов была выдвинута в начале 20 – го века русским ученым, изобретателем и учителем Константином Эдуардовичем Циалковским.
- Циалковский разработал теорию движения ракет, вывел формулу для расчета их скорости, был первым, кто предложил использовать многоступенчатые ракеты.
- Сергей Павлович Королёв – советский ученый и конструктор, руководитель всех космических полетов. Юрий Алексеевич Гагарин – первый космонавт, совершил облет Земли 12 апреля 1961 г. за 1 час 48 минут на корабле «Восток».
- Реактивное движение происходит за счёт того, что от тела отделяется и движется какая-то его часть, в результате чего само тело приобретает противоположно направленный импульс.
- Принцип реактивного движения находит широкое практическое применение в авиации и космонавтики.
- В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости. Поэтому для космических полётов могут быть использованы только реактивные летательные аппараты, т.е. ракеты.
- В любой ракете независимо от ее конструкции всегда имеется оболочка и топливо с окислителем.
- На рисунке изображена ракета в разрезе. Мы видим, что оболочка ракеты включает в себя полезный груз (космический корабль), приборный отсек и двигатель (камера сгорания, насосы и пр.).
- В практике космических полетов обычно используют многоступенчатые ракеты, развивающие гораздо большие скорости и предназначеные для более дальних полетов.
- На рисунке показана схема такой ракеты. После того как топливо и окислитель первой ступени будут израсходованы, эта ступень автоматически отбрасывается и в действие вступает двигатель второй ступени и т.д. Уменьшение общей массы ракеты путем отбрасывания уже ненужной ступени позволяет сэкономить топливо и окислитель и увеличить скорость ракеты.
- Для возвращения космического корабля на Землю, или посадки его на другую планету, одну ступень оставляют. Она используется для торможения корабля перед посадкой.
- При этом ракету разворачивают на 180 градусов, чтобы сопло оказалось впереди.Тогда вырывающийся из ракеты газ сообщает ей импульс, направленный против скорости ее движения, что приводит к уменьшению скорости и дает возможность осуществить посадку.
- Конец.