Презентация "Конус" 11 класс
Подписи к слайдам:
- Проект подготовила ученица 11 класса
- Ламонова Светлана
- Руководитель: учитель математики
- Стрельникова Л.П.
- Проект на тему:
- "Конус".
- 2009 год.
- Новотроицкая СОШ.
- Ко́нус — тело, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность. Иногда конусом называют часть такого тела, полученную объединением всех отрезков, соединяющих вершину и точки плоской поверхности (последнюю в таком случае называют основанием конуса, а конус называют опирающимся на данное основание). Далее будет рассматриваться именно этот случай, если не оговорено обратное. Если основание конуса представляет собой многоугольник, конус становится пирамидой. Отрезок, соединяющий вершину и границу основания, называется образующей конуса.
- Объединение образующих конуса называется образующей (или боковой) поверхностью конуса. Образующая поверхность конуса является конической поверхностью.
- Понятие.
- Определения.
- Конусом (точнее, круговым конусом) называется тело, которое состоит из круга — основания конуса, точки, не лежащей в плоскости этого круга,— вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания .Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими, конуса. Поверхность конуса состоит из основания и боковой поверхности
- Виды конусов.
- Если основание конуса имеет центр симметрии (например, является кругом или эллипсом) и ортогональная проекция вершины конуса на плоскость основания совпадает с этим центром, то конус называется прямым. При этом прямая, соединяющая вершину и центр основания, называется осью конуса.
- Косой (наклонный) конус — конус, у которого ортогональная проекция вершины на основание не совпадает с его центром симметрии.
- Круговой конус — конус, основание которого является кругом.
- Прямой круговой конус (часто его называют просто конусом) можно получить вращением прямоугольного треугольника вокруг прямой, содержащей катет (эта прямая представляет собой ось конуса).
- Конус, опирающийся на эллипс, параболу или гиперболу, называют соответственно эллиптическим, параболическим и гиперболическим конусом (последние два имеют бесконечный объём).
- Часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся между вершиной и основанием, называется усечённым конусом. Если площадь основания конечна, то объём конуса также конечен и равен трети произведения высоты на площадь основания. Таким образом, все конусы, опирающиеся на данное основание и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.
- Виды конусов.
- Центр тяжести любого конуса с конечным объёмом лежит на четверти высоты от основания.
- Телесный угол при вершине прямого кругового конуса равен
- — угол раствора конуса (то есть удвоенный угол между осью конуса и любой прямой на его боковой поверхности).
- Теорема 1.
- Площадь боковой и полной поверхности конуса с радиусом R и образующей L выражаются формулами: Sбок= πRL; Sполн=πR(R+L)
- Объем кругового конуса равен
- Пересечение плоскости с прямым круговым конусом является одним из конических сечений (в невырожденных случаях — эллипсом, параболой или гиперболой, в зависимости от положения секущей плоскости). В алгебраической геометрии конус — это произвольное подмножество K векторного пространства V над полем F, для которого для любого
- λK = K
- Теорема 2.
- Сечение конуса плоскостью, проходящей через его вершину, представляет собой равнобедренный треугольник, у которого боковые стороны являются образующими конуса .В частности, равнобедренным треугольником является осевое сечение конуса. Это сечение, которое проходит через ось конуса
- Теорема 3.
- Плоскость, параллельная плоскости основания конуса, пересекает конус по кругу, а боковую поверхность - по окружности с центром на оси конуса.
- Касательной плоскостью к конусу называется плоскость, проходящая через образующую конуса и перпендикулярная плоскости осевого сечения, содержащей эту образующую
- Теорема 4.