Презентация "Теория и практика решения задания 18 ЕГЭ по информатике"
Подписи к слайдам:
Автор:
учитель информатики МБОУ «Лицей»
первой квалификационной категории
Мурзина Ольга Ивановна
МБОУ «Лицей» г. Арзамас
МКУ ГИМК
Теория и практика решения задания 18 ЕГЭ по информатике
Арзамас, 2017
Мнемоническое правило
Один из ее главных принципов – дополнение до целого (дополнение противоположностью)
Соционика – это информационная психология
Решающая формула
А ¬А = 1
А ¬А = 0
В алгебре логики есть формула дополнения до целого:
В некоторых задачах мы будем использовать вместо этой формулы умножение противоположностей:
Типы задания 18
- Задания на отрезки
- Задания на множества
- Задания на поразрядную конъюнкцию
- Задания на условие делимости
Задания на отрезки
(№ 376) На числовой прямой даны два отрезка: P=[4,15] и Q=[12,20]. Укажите наименьшую возможную длину такого отрезка A, что формула ((x ∈ P) ∧ (x ∈ Q)) → (x ∈ A)
тождественно истинна, то есть принимает значение 1 при любом значении переменной х.
Источник - сайт Полякова К.Ю.
Решающая формула
А ¬А = 1
Для выбора решающей формулы важно внимательно прочитать требование задачи.
В нашей задаче в требовании сказано:
принимает значение 1 при любом значении переменной х.
Выбор решающей формулы очевиден:
Решение задачи на отрезки
- Легенда
- Формализация условия
- Решение логического уравнения
- Интерпретация полученного результата
Разделим решение задачи на этапы:
Решение задачи на отрезки
- Легенда – это удобные нам условные обозначения, которые мы будем использовать при решении.
Введем следующие обозначения:
P = x P
Q = x Q
A = x A
Решение задачи на отрезки
2) Формализация условия – перепишем формулу из условия задачи в соответствие с легендой.
Было:
((x ∈ P) ∧ (x ∈ Q)) → (x ∈ A) = 1
Стало:
(P ∧ Q) → A = 1
Решение задачи на отрезки
3) Решение логического уравнения –вначале это, возможно, самый сложный этап в решении задачи. Но позже, при накоплении опыта, он уже не будет казаться таким уж сложным
Рассмотрим решение логического уравнения по шагам.
Решение задачи на отрезки
3.1. Представим логическое следование в базовых логических операциях по формуле: А → В = ¬А В:
(P ∧ Q) → A = 1
¬(P ∧ Q) A = 1
Решение задачи на отрезки
3.2. Сведем получившееся выражение к решающей формуле: А ¬А = 1 (в алгебре логики справедлив закон коммутативности, т.е. А ¬А = ¬А А) :
¬(P ∧ Q) A = 1, отсюда
¬А = ¬(P ∧ Q)
Ответом в логическом уравнении будет:
А = P ∧ Q.
Решение задачи на отрезки
4) Интерпретация полученного результата.
Наш ответ: А = P ∧ Q.
В алгебре логики это выражение означает пересечение объемов двух логических объектов. По условию нашей задачи – это пересечение отрезков P и Q.
Решение задачи на отрезки
Пересечение отрезков P и Q можно визуализировать: P=[4,15] и Q=[12,20].
4
12
15
20
По условию нашей задачи, нам нужна минимальная длина отрезка А. Находим ее: 15 – 12 = 3.
Ответ: 3.
Ответ на сайте Полякова К.Ю.: 3
Задания на отрезки
(№ 360) На числовой прямой даны три отрезка: P=[10,25], Q=[15,30] и R=[25,40]. Какова максимальная длина отрезка A, при котором формула ((x ∈ Q) → (x ∉ R) ) ∧ (x ∈ A) ∧ (x ∉ P)
тождественно ложна, то есть принимает значение 0 при любом значении переменной х?
Источник - сайт Полякова К.Ю.
Решающая формула
А ¬А = 0
Для выбора решающей формулы важно внимательно прочитать требование задачи.
В нашей задаче в требовании сказано:
принимает значение 0 при любом значении переменной х.
Выбор решающей формулы очевиден:
Решение задачи на отрезки
- Легенда
- Формализация условия
- Решение логического уравнения
- Интерпретация полученного результата
Решение задачи на отрезки
- Легенда
R = x R
Q = x Q
A = x A
P = x P
Решение задачи на отрезки
2) Формализация условия
Было:
((x ∈ Q) → (x ∉ R) ) ∧ (x ∈ A) ∧ (x ∉ P) = 0
Стало:
( Q → ¬R ) ∧ A ∧ ¬ P = 0
Решение задачи на отрезки
3) Решение логического уравнения
( Q → ¬R ) ∧ A ∧ ¬ P = 0
3.1. Представим логическое следование в базовых логических операциях по формуле: А → В = ¬А В, и переставим множители согласно закону коммутативности умножения:
A ∧ (¬ Q ¬R ) ∧ ¬ P = 0
Решение задачи на отрезки
3) Решение логического уравнения
A ∧ (¬ Q ¬R ) ∧ ¬ P = 0
3.2. Сведем получившееся выражение к решающей формуле: А ¬А = 0 и найдем, чему равно ¬А :
¬А = (¬ Q ¬R ) ∧ ¬ P
Решение задачи на отрезки
3) Решение логического уравнения
¬А = (¬ Q ¬R ) ∧ ¬ P
3.3. Упростим выражение для ¬А по закону де Моргана ¬А¬В=¬(АВ):
¬А = ¬ (Q R ) ∧ ¬ P,
и по другому закону де Моргана ¬А¬В=¬(АВ):
¬А = ¬ (Q R P)
Решение задачи на отрезки
3) Решение логического уравнения
¬А = ¬ (Q R P)
3.4. Очевидно, что
А = Q R P
Решение задачи на отрезки
4) Интерпретация полученного результата
А = Q R P
Отрезок А – это пересечение отрезков Q и R и его объединение с отрезком Р.
Решение задачи на отрезки
Пересечение отрезков R и Q можно визуализировать: Q=[15,30] и R=[25,40].
15
25
30
40
Отрезок P=[10,25] нанесем на наш чертеж и объединим с пересечением:
15
25
30
40
10
Решение задачи на отрезки
15
25
30
40
10
По условию нашей задачи, нам нужна максимальная длина отрезка А. Находим ее: 30 – 10 = 20.
Ответ: 20.
А = Q R P
Ответ на сайте Полякова К.Ю.: 20
2. Задания на множества
(№ 386) Элементами множеств А, P, Q являются натуральные числа, причём P={1,2,3,4,5,6}, Q={3,5,15}. Известно, что выражение (x ∉ A) → ((x ∉ P) ∧ (x ∈ Q)) ∨ (x ∉ Q)
истинно (т.е. принимает значение 1 при любом значении переменной х. Определите наименьшее возможное количество элементов в множестве A.
Источник - сайт Полякова К.Ю.
Решение задачи на множества
- Легенда
- Формализация условия
- Решение логического уравнения
- Интерпретация полученного результата
Решение задачи на множества
- Легенда
A = x ∈ A
P = x ∈ P
Q = x ∈ Q
Решение задачи на множества
2) Формализация условия
Было:
(x ∉ A) → ((x ∉ P) ∧ (x ∈ Q)) ∨ (x ∉ Q) = 1
Стало:
¬ A → (¬P ∧ Q) ¬ Q = 1
Решение задачи на множества
3) Решение логического уравнения
¬ A → (¬P ∧ Q) ¬ Q = 1
3.1. Представим логическое следование в базовых логических операциях и сгруппируем:
A ((¬P ∧ Q) ¬ Q) = 1
Решение задачи на множества
A ((¬P ∧ Q) ¬Q) = 1
3.2. Сведем получившееся выражение к решающей формуле:
А ¬А = 1
и найдем, чему равно ¬А :
¬А = (¬P ∧ Q) ¬Q
Решение задачи на множества
¬А = (¬P ∧ Q) ¬Q
3.3. Упростим выражение для ¬А, раскрыв скобки по закону дистрибутивности сложения:
¬А = (¬P ¬Q) (Q ¬Q)
Q ¬Q = 1
¬А = (¬P ¬Q)
Решение задачи на множества
¬А = (¬P ¬Q)
По закону де Моргана:
¬А = ¬(P Q)
3.4. Очевидно, что
А = P Q
Решение задачи на множества
А = P Q
4) Интерпретация полученного результата
Искомое множество А представляет собой пересечение множеств P и Q.
Решение задачи на множества
Искомое множество А есть пересечение множеств
P = 1, 2, 3, 4, 5, 6 и Q ={3, 5,15}, таким образом A ={3, 5}
и содержит только 2 элемента.
Ответ: 2
Ответ на сайте Полякова: 2
2. Задания на множества
(№ 368) Элементами множеств А, P, Q являются натуральные числа, причём P={2,4,6,8,10,12} и Q={4,8,12,116}. Известно, что выражение (x ∈ P) → (((x ∈ Q) ∧ (x ∉ A)) → (x ∉ P))
истинно (т. е. принимает значение 1) при любом значении переменной х. Определите наименьшее возможное значение суммы элементов множества A.
Источник - сайт Полякова К.Ю.
- Легенда
- Формализация условия
- Решение логического уравнения
- Интерпретация полученного результата
Решение задачи на множества
- Легенда
A = x ∈ A
P = x ∈ P
Q = x ∈ Q
Решение задачи на множества
2) Формализация условия
Было:
(x ∈ P)→(((x ∈ Q) ∧ (x ∉ A))→(x ∉ P)) = 1
Стало:
P → ((Q ∧ ¬A) → ¬P) = 1
Решение задачи на множества
Решение задачи на множества
3) Решение логического уравнения
P → ((Q ∧ ¬A) → ¬P) = 1
3.1. Представим первое логическое следование (в скобках) в базовых логических операциях :
P → (¬(Q ∧ ¬A) ¬P) = 1
Решение задачи на множества
P → (¬(Q ∧ ¬A) ¬P) = 1
Представим второе логическое следование в базовых логических операциях, применим закон де Моргана и перегруппируем:
¬P (¬(Q ∧ ¬A) ¬P) = 1
¬P ¬Q A ¬P = 1
Решение задачи на множества
A (¬P ¬Q ¬P) = 1
3.2. Сведем получившееся выражение к решающей формуле:
А ¬А = 1
и найдем, чему равно ¬А :
¬А = (¬P ¬Q ¬P)
Решение задачи на множества
¬А = ¬P ¬Q ¬P
3.3. Упростим выражение для ¬А по формуле А А = А:
¬А = ¬P ¬Q
Далее, по закону де Моргана получаем:
¬А = ¬(P Q)
Решение задачи на множества
¬А = ¬(P Q)
3.4. Очевидно, что
А = P Q
4) Интерпретация полученного результата
Искомое множество А представляет собой пересечение множеств P и Q.
Решение задачи на множества
Искомое множество А есть пересечение множеств
P = 2, 4, 6, 8, 10, 12 и
Q ={4, 8, 12, 16}, таким образом
A ={4, 8, 12}
и содержит только 3 элемента, сумма которых 4+8+12=24 .
Ответ: 24
Ответ на сайте Полякова: 24
3. Задания на поразрядную конъюнкцию
(№ 379) Обозначим через m&n пораз-рядную конъюнкцию неотрицательных целых чисел m и n. Так, например, 14 & 5 = 11102 & 01012 = 01002 = 4. Для какого наименьшего неотрицательного целого числа А формула (x & 29 ≠ 0) → ((x & 12 = 0) → (x & А ≠ 0))
тождественно истинна (т.е. принимает значение 1 при любом неотрицательном целом значении переменной х)?
- Легенда
- Формализация условия
- Решение логического уравнения
- Интерпретация полученного результата
Решение задачи на поразрядную конъюнкцию
- Легенда
Легенда для задач на поразрядную конъюнкцию отличается от всех остальных случаев:
B = (x & 29 ≠ 0)
C = (x & 12 ≠ 0)
A = (x & А ≠ 0)
Решение задачи на поразрядную конъюнкцию
Мы принимаем за истинное высказывание поразрядную конъюнкцию, отличную от нуля, иначе поразрядная конъюнкция теряет свой логический смысл, т.к. всегда можно представить Х всеми нулями.
Решение задачи на поразрядную конъюнкцию
2) Формализация условия
Было:
(x & 29 ≠ 0)→((x & 12 = 0)→(x & А ≠ 0))=1
Стало:
В → (¬С → А) = 1
Решение задачи на поразрядную конъюнкцию
3) Решение логического уравнения
В → (¬С → А) = 1
В → (С А) = 1
(¬В С) А = 1
¬А = ¬В С
¬А = ¬(В ¬ С)
Очевидно, что
А = В ¬ С
Решение задачи на поразрядную конъюнкцию
Решение задачи на поразрядную конъюнкцию
4) Интерпретация полученного результата
Искомое двоичное значение поразрядной конъюнкции А – это двоичное значение поразрядной конъюнкции значения В и инверсии двоичного значения С.
Решение задачи на поразрядную конъюнкцию
B = (x & 29 ≠ 0)
В или 29 = 111012
C = (x & 12 ≠ 0)
12 = 11002
¬С или инверсия 12 = 00112
Решение задачи на поразрядную конъюнкцию
В или 29 = 111012
¬С или инверсия 12 = 00112
А = В ¬ С
х111012
00112
100012
А = 100012 = 17
Ответ на сайте Полякова: 17
3. Задания на поразрядную конъюнкцию
(№ 375) Введём выражение M & K, обозначающее поразрядную конъюнкцию M и K (логическое «И» между соответ-ствующими битами двоичной записи). Определите наименьшее натуральное число A, такое что выражение (X & 49 ≠ 0) → ((X & 33 = 0) → (X & A ≠ 0))
тождественно истинно (то есть принимает значение 1 при любом натуральном значении переменной X)?
- Легенда
- Формализация условия
- Решение логического уравнения
- Интерпретация полученного результата
Решение задачи на поразрядную конъюнкцию
- Легенда
Легенда для задач на поразрядную конъюнкцию отличается от всех остальных случаев:
B = (x & 49 ≠ 0)
C = (x & 33 ≠ 0)
A = (x & А ≠ 0)
Решение задачи на поразрядную конъюнкцию
2) Формализация условия
Было:
(X & 49 ≠ 0) → ((X & 33 = 0) → (X & A ≠ 0))=1
Стало:
В → (¬С → А) = 1
Решение задачи на поразрядную конъюнкцию
3) Решение логического уравнения
В → (¬С → А) = 1
В → (С А) = 1
(¬В С) А = 1
¬А = (¬В С)
Очевидно:
А = В ¬С
Решение задачи на поразрядную конъюнкцию
Решение задачи на поразрядную конъюнкцию
4) Интерпретация полученного результата
Искомое двоичное значение поразрядной конъюнкции А – это двоичное значение поразрядной конъюнкции значения В и инверсии двоичного значения С.
Решение задачи на поразрядную конъюнкцию
B = (x & 49 ≠ 0)
В или 49 = 1100012
C = (x & 33 ≠ 0)
33 = 1000012
¬С или инверсия 33 = 0111102
Решение задачи на поразрядную конъюнкцию
В или 49 = 1100012
¬С или инверсия 33 = 0111102
А = В ¬ С
х1100012
0111102
0100002
А = 100002 = 16
Ответ на сайте Полякова: 16
4. Задания на условие делимости
(№ 372) Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа А формула ¬ДЕЛ(x,А) → (¬ДЕЛ(x,21) ∧ ¬ДЕЛ(x,35))
тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?
Источник - сайт Полякова К.Ю.
- Легенда
- Формализация условия
- Решение логического уравнения
- Интерпретация полученного результата
Решение задачи
на условие делимости
- Легенда
Решение задачи
на условие делимости
Легенда простая: А = ДЕЛ(x,А)
21 = ДЕЛ(х,21)
35 = ДЕЛ(x,35)
2) Формализация условия
Решение задачи
на условие делимости
Было:
¬ДЕЛ(x,А) → (¬ДЕЛ(x,21) ∧ ¬ДЕЛ(x,35))
¬А → (¬21 ∧ ¬35) = 1
тождественно истинна (то есть принимает значение 1)
Стало:
3) Решение логического уравнения
Решение задачи
на условие делимости
¬А → (¬21 ∧ ¬35) = 1
А (¬21 ∧ ¬35) = 1
¬А = ¬21 ∧ ¬35
Очевидно, что
А = 21 35
4) Интерпретация полученного результата
А = 21 35
В данной задаче это самый сложный этап решения. Нужно понять, что же представляет из себя число А – НОК или НОД или …
Решение задачи
на условие делимости
4) Интерпретация полученного результата
А = 21 35
Итак, наше число А таково, что Х делится на него без остатка, тогда и только тогда, когда Х делится без остатка на 21 или на 35. В этом случае ищем
А = НОД (21, 35) = 7
Решение задачи
на условие делимости
Ответ на сайте Полякова: 7
4. Задания на условие делимости
(№ 370) Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа А формула ¬ДЕЛ(x,А) → ((ДЕЛ(x,6) → ¬ДЕЛ(x,4))
тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?
Источник - сайт Полякова К.Ю.
- Легенда
- Формализация условия
- Решение логического уравнения
- Интерпретация полученного результата
Решение задачи
на условие делимости
- Легенда
А = ДЕЛ(x,А)
6 = ДЕЛ(x,6)
4 = ДЕЛ(x,4)
Решение задачи
на условие делимости
2) Формализация условия
Решение задачи
на условие делимости
Было:
¬ДЕЛ(x,А) → ((ДЕЛ(x,6) → ¬ДЕЛ(x,4))
тождественно истинна (то есть принимает значение 1
Стало:
¬А → (6 → ¬4) = 1
3) Решение логического уравнения
¬А → (6 → ¬4) = 1
¬А → (¬ 6 ¬4) = 1
А (¬ 6 ¬4) = 1
¬А = ¬ 6 ¬4
Очевидно:
А = 64
Решение задачи
на условие делимости
4) Интерпретация полученного результата
А = 64
Итак, А таково, что Х делится на него без остатка тогда и только тогда, когда Х делится без остатка и на 6, и на 4. Т.е. А = НОК(6, 4) = 12
Ответ на сайте Полякова: 12
Решение задачи
на условие делимости
Рефлексия
Оцените, пожалуйста, свой уровень понимания, достигнутый на занятии, по шкале от 0 до 10.
Сможете ли Вы теперь объяснить решение задания 18 своим ученикам или друзьям?
(да, нет, не знаю).
Спасибо за внимание!