Презентация "Свойства логических операций" 9 класс


Подписи к слайдам:
Логические элементы

Свойства логических операций

законы логики

(9 класс)

Малянов В.В.

МБОУ Болтинская СШ

Учитель информатики

Для любых логических формул A, B, C истинны следующие неравенства

1. Закон двойного отрицания

¬¬A=A

Двойное отрицание исключает отрицание.

Для любых логических формул A, B, C истинны следующие неравенства

2. Закон повторения

- для логического умножения

A & A = A

- для логического сложения

A v A = A

Для любых логических формул A, B, C истинны следующие неравенства

3. Коммутативный (переместительный) закон

- для логического умножения

A & B = B & A

- для логического сложения

A v B = B v A

Для любых логических формул A, B, C истинны следующие неравенства

4. Ассоциативный (сочетательный) закон

- для логического умножения

(A & B) & C = A & (B & C)

- для логического сложения

(A v B) v C = A v (B v C)

Для любых логических формул A, B, C истинны следующие неравенства

5. Дистрибутивный (распределительный) закон

- для логического умножения

A & (B v C) = (A & B) v (A & C)

- для логического сложения

A v (B & C) = (A v B) & (A v C)

Для любых логических формул A, B, C истинны следующие неравенства

6. Законы поглощения

- для логического умножения

A & (A v C) = A

- для логического сложения

A v (A & C) = A

Для любых логических формул A, B, C истинны следующие неравенства

7. Законы общей инверсии (законы де Моргана)

- для логического умножения

¬(A & B) = ¬A v ¬B

- для логического сложения

¬(A v C) = ¬A & ¬B

Для любых логических формул A, B, C истинны следующие неравенства

8. Законы исключения третьего

- для логического умножения

A & ¬A = 0

- для логического сложения

A v ¬A = 1

Для любых логических формул A, B, C истинны следующие неравенства

9. Законы операций с 0 и 1

- для логического умножения

A & 0 = 0; A & 1 = A

- для логического сложения

A v 0 = A; A v 1 = 1

A

B

C

B&C

A v (B & C)

A v B

A v C

(A v B) & (A v C)

0

0

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

1

0

1

1

1

для логического сложения: A v (B & C) = (A v B) & (A v C)

Доказательство распределительного закона

Умножаем В на С и выводим результат.

0

0

0

0

0

0

1

1

Складываем А и В и выводим результат.

0

0

0

1

1

1

1

1

Складываем А и (В&С) и выводим результат.

0

0

1

1

1

1

1

1

Складываем А и C и выводим результат.

0

0

1

1

1

1

1

1

Умножаем (АvB) на (AvC )и выводим результат.

0

0

0

1

1

1

1

1

Равенство выделенных столбцов доказывает распределительный закон.

Умножаем А на (ВvС) и выводим результат.

Умножаем А на C и выводим результат.

Складываем (А&B) и (A&C )и выводим результат.

Равенство выделенных столбцов доказывает распределительный закон.

Умножаем А на В и выводим результат.

A

B

C

B v C

A & (B v C)

A & B

A & C

(A & B) v (A & C)

0

0

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

1

0

1

1

1

для логического умножения: A & (B v C) = (A & B) v (A & C)

Доказательство распределительного закона

Складываем В и С и выводим результат

0

1

1

0

1

1

1

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

1

1

0

0

0

1

0

1

1

1

0

0

0

0

0

1

1

1